standing AI frameworks, to standardize and ac-
celerate the knowledge extraction process.
• Broader Corpus Coverage. We plan to build our
HTEKG on a larger scale corpus.
• Clearer Downstream Application Scenarios. Be-
sides analysis, we will also explore using the
HTEKG to assist in tasks such as role-playing and
procedural content generation. For instance, in
role-playing scenarios, current systems that com-
bine LLMs with agent-based design are highly
disorganized, with each implementation using its
own unique memory design. However, since our
ontology encompasses detailed role information
(including states, goals, emotions, and past ac-
tions), our HTEKG can be applied to standard-
ize the design of agent systems in this domain,
thereby enhancing and scaling up the role-playing
capabilities of existing LLMs.
REFERENCES
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman,
S., Anadkat, S., et al. (2023). Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.
Ashby, T., Webb, B. K., Knapp, G., Searle, J., and Fulda,
N. (2023). Personalized quest and dialogue genera-
tion in role-playing games: A knowledge graph-and
language model-based approach. In Proceedings of
the 2023 CHI Conference on Human Factors in Com-
puting Systems, pages 1–20.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A., Mody,
A., Truitt, S., and Larson, J. (2024). From local to
global: A graph rag approach to query-focused sum-
marization. arXiv preprint arXiv:2404.16130.
Ehrlinger, L. and W
¨
oß, W. (2016). Towards a definition
of knowledge graphs. SEMANTiCS (Posters, Demos,
SuCCESS), 48(1-4):2.
Ellis, A. (1991). The revised abc’s of rational-emotive ther-
apy (ret). Journal of rational-emotive and cognitive-
behavior therapy, 9(3):139–172.
Gottschalk, S. and Demidova, E. (2018). Eventkg: A multi-
lingual event-centric temporal knowledge graph. In
The Semantic Web: 15th International Conference,
ESWC 2018, Heraklion, Crete, Greece, June 3–7,
2018, Proceedings 15, pages 272–287. Springer.
Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-
Schneider, P., and Sattler, U. (2008). Owl 2: The next
step for owl. Journal of Web Semantics, 6(4):309–322.
Semantic Web Challenge 2006/2007.
Hitzler, P. and Janowicz, K. (2013). Linked data, artifi-
cial intelligence, and the semantic web. AI Magazine,
34(2):63–72.
Khan, A. F., Bellandi, A., Benotto, G., Frontini, F., Giovan-
netti, E., and Reboul, M. (2016). Leveraging a narra-
tive ontology to query a literary text. In 7th Workshop
on Computational Models of Narrative (CMN 2016).
Schloss-Dagstuhl-Leibniz Zentrum f
¨
ur Informatik.
Kozaki, K., Egami, S., Matsushita, K., Ugai, T., Kawamura,
T., and Fukuda, K. (2023). Datasets of mystery stories
for knowledge graph reasoning challenge. In ESWC
Workshops.
Kurokawa, M. (2021). Explainable knowledge reasoning
framework using multiple knowledge graph embed-
ding. In Proceedings of the 10th International Joint
Conference on Knowledge Graphs, pages 172–176.
Lee, Y. and Chang, H. (2019). The role of ontology in un-
derstanding human relations. Cognitive Science Quar-
terly, 39(1):45–65.
Lehmann, J. (2015). Dbpedia – a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic
Web, 6(2):167–195.
Lisena, P., Schwabe, D., van Erp, M., Leemans, I., Tul-
lett, W., Troncy, R., Ehrich, S. C., and Ehrhart, T.
(2023). An ontology for creating hypermedia stories
over knowledge graphs. In SWODCH 2023, Workshop
on Semantic Web and Ontology Design for Cultural
Heritage.
Lombardo, V., Damiano, R., and Pizzo, A. (2018). Dram-
mar: A comprehensive ontological resource on drama.
In The Semantic Web–ISWC 2018: 17th International
Semantic Web Conference, Monterey, CA, USA, Octo-
ber 8–12, 2018, Proceedings, Part II 17, pages 103–
118. Springer.
Miller, G. (1995). Wordnet: A lexical database for english.
Communications of the ACM, 38(11):39–41.
Nguyen, H., Chen, H., Chen, J., Kargozari, K., and Ding,
J. (2023). Construction and evaluation of a domain-
specific knowledge graph for knowledge discovery.
P. Wilton, J. Tarling, J. M. (2013). Storyline ontology - an
ontology to represent news storylines.
Pileggi, S. F. (2021). Knowledge interoperability and re-
use in empathy mapping: An ontological approach.
Expert Systems with Applications, 180:115065.
Siahaan, D., Raharjana, I., and Fatichah, C. (2023). User
story extraction from natural language for require-
ments elicitation: Identify software-related informa-
tion from online news. Information and Software
Technology, 158:107195.
Ugai, T. (2023). Criminal investigation with augmented on-
tology and link prediction. In 2023 IEEE 17th Inter-
national Conference on Semantic Computing (ICSC),
pages 288–289. IEEE.
Ugai, T., Koyanagi, Y., and Nishino, F. (2024). A logical ap-
proach to criminal case investigation. arXiv preprint
arXiv:2402.08284.
Van Hage, W. R. and Ceolin, D. (2013). The simple event
model. In Situation awareness with systems of sys-
tems, pages 149–169. Springer.
KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development
214