Bag, S., Kumar, S. K., & Tiwari, M. K. (2019). An efficient
recommendation generation using relevant Jaccard
similarity. Information Sciences, 483, 53-64.
Bondevik, J. N., Bennin, K. E., Babur, Ö., & Ersch, C.
(2023). A systematic review on food recommender
systems. Expert Systems with Applications, 122166.
Chen, Z., Jin, S., Liu, R., & Zhang, J. (2021). A deep non-
negative matrix factorization model for big data
representation learning. Frontiers in Neurorobotics, 15,
701194.
Chhipa, S., Berwal, V., Hirapure, T., & Banerjee, S. (2022).
Recipe recommendation system using TF-IDF. In ITM
web of conferences (Vol. 44, p. 02006). EDP Sciences.
Gao, X., Feng, F., He, X., Huang, H., Guan, X., Feng, C.,
... & Chua, T. S. (2019). Hierarchical attention network
for visually-aware food recommendation. IEEE
Transactions on Multimedia, 22(6), 1647-1659.
Ge, M., Elahi, M., Fernaández-Tobías, I., Ricci, F., &
Massimo, D. (2015, May). Using tags and latent factors
in a food recommender system. In Proceedings of the
5th international conference on digital health 2015 (pp.
105-112).
Hamdollahi Oskouei, S., & Hashemzadeh, M. (2023).
FoodRecNet: a comprehensively personalized food
recommender system using deep neural networks.
Knowledge and Information Systems, 65(9), 3753-
3775.
Hong, S. E., & Kim, H. J. (2016, July). A comparative study
of video recommender systems in big data era. In 2016
Eighth International Conference on Ubiquitous and
Future Networks (ICUFN) (pp. 125-127). IEEE.
Jia, N., Chen, J., & Wang, R. (2022). An attention-based
convolutional neural network for recipe
recommendation. Expert Systems with Applications,
201, 116979.
Luo, X., Zhou, M., Xia, Y., & Zhu, Q. (2014). An efficient
non-negative matrix-factorization-based approach to
collaborative filtering for recommender systems. IEEE
Transactions on Industrial Informatics, 10(2), 1273-
1284.
Mokdara, T., Pusawiro, P., & Harnsomburana, J. (2018,
July). Personalized food recommendation using deep
neural network. In 2018 Seventh ICT international
student project conference (ICT-ISPC) (pp. 1-4). IEEE.
Nam, L. N. H. (2021a). Latent factor recommendation
models for integrating explicit and implicit preferences
in a multi-step decision-making process. Expert
Systems with Applications, 174.
Nam, L. N. H. (2021b). Towards comprehensive profile
aggregation methods for group recommendation based
on the latent factor model. Expert Systems with
Applications, 185.
Padmavathi, A., & Sarker, D. (2023, July). RecipeMate: A
Food Media Recommendation System Based on
Regional Raw Ingredients. In 2023 14th International
Conference on Computing Communication and
Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
Salahian, N., Tab, F. A., Seyedi, S. A., & Chavoshinejad, J.
(2023). Deep autoencoder-like NMF with contrastive
regularization and feature relationship preservation.
Expert Systems with Applications, 214, 119051.
Shen, R. P., Zhang, H. R., Yu, H., & Min, F. (2019).
Sentiment based matrix factorization with reliability for
recommendation. Expert Systems with Applications,
135, 249-258.
Smith, B., & Linden, G. (2017). Two decades of
recommender systems at Amazon. com. Ieee internet
computing, 21(3), 12-18.
Teng, C. Y., Lin, Y. R., & Adamic, L. A. (2012, June).
Recipe recommendation using ingredient networks. In
Proceedings of the 4th annual ACM web science
conference (pp. 298-307).
Twomey, N., Fain, M., Ponikar, A., & Sarraf, N. (2020,
September). Towards multi-language recipe
personalisation and recommendation. In Proceedings of
the 14th ACM conference on recommender systems
(pp. 708-713).
Vairale, V. S., & Shukla, S. (2021). Recommendation of
food items for thyroid patients using content-based knn
method. In Data Science and Security: Proceedings of
IDSCS 2020 (pp. 71-77). Springer Singapore.
Vy, H. T. H., Pham-Nguyen, C., & Nam, L. N. H. (2024).
Integrating textual reviews into neighbor-based
recommender systems. Expert Systems with
Applications, 249, 123648.
Zhang, J., Li, M., Liu, W., Lauria, S., & Liu, X. (2022).
Many-objective optimization meets recommendation
systems: A food recommendation scenario.
Neurocomputing, 503, 109-117.