![](bg7.png)
Fang, X., Kruger, U., Homayounieh, F., Chao, H., Zhang,
J., Digumarthy, S. R., Arru, C. D., Kalra, M. K., & Yan,
P. (2021). Association of AI quantified COVID-19
chest CT and patient outcome. International Journal of
Computer Assisted Radiology and Surgery, 16(3), 435–
445. https://doi.org/10.1007/s11548-020-02299-5
Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P. D.,
Zhang, H., Ji, W., ... & Siegel, E. (2020). Rapid ai
development cycle for the coronavirus (covid-19)
pandemic: Initial results for automated detection &
patient monitoring using deep learning ct image
analysis. arXiv preprint arXiv:2003.05037.Greenspan,
H., San José Estépar, R., Niessen, W. J., Siegel, E., &
Nielsen, M. (2020). Position paper on COVID-19
imaging and AI: From the clinical needs and
technological challenges to initial AI solutions at the lab
and national level towards a new era for AI in
healthcare. Medical Image Analysis, 66.
https://doi.org/10.1016/j.media.2020.101800
Houda, I., Dickhoff, C., Uyl-de Groot, C. A., Reguart, N.,
Provencio, M., Levy, A., Dziadziuszko, R., Pompili, C.,
Di Maio, M., Thomas, M., Brunelli, A., Popat, S.,
Senan, S., & Bahce, I. (2024). New systemic treatment
paradigms in resectable non-small cell lung cancer and
variations in patient access across Europe. The Lancet
Regional Health - Europe, 38, 100840.
https://doi.org/10.1016/j.lanepe.2024.100840
Karimkhani, H., Attariabad, A., & Vahed, H. (2022). High
sensitive plasmonic sensor with simple design of the
ring and the disk resonators. Optical and Quantum
Electronics, 54(6). https://doi.org/10.1007/s11082-
022-03736-2
Kyriakopoulou, M. (2020). Histogram Equalization on
Medical Images: CLAHE implementation on CT
images.
Lizzi, F., Agosti, A., Brero, F., Cabini, R. F., Fantacci, M.
E., Figini, S., Lascialfari, A., Laruina, F., Oliva, P.,
Piffer, S., Postuma, I., Rinaldi, L., Talamonti, C., &
Retico, A. (2022). Quantification of pulmonary
involvement in COVID-19 pneumonia by means of a
cascade of two U-nets: training and assessment on
multiple datasets using different annotation criteria.
International Journal of Computer Assisted Radiology
and Surgery, 17(2), 229–237.
https://doi.org/10.1007/s11548-021-02501-2
Lizzi, F., Postuma, I., Brero, F., Cabini, R. F., Fantacci, M.
E., Lascialfari, A., Oliva, P., Rinaldi, L., & Retico, A.
(2023). Quantification of pulmonary involvement in
COVID-19 pneumonia: an upgrade of the LungQuant
software for lung CT segmentation. European Physical
Journal Plus, 138(4). https://doi.org/10.1140/epjp/
s13360-023-03896-4
Mohamed, E., García Martínez, D. J., Hosseini, M. S.,
Yoong, S. Q., Fletcher, D., Hart, S., & Guinn, B. A.
(2024). Identification of biomarkers for the early
detection of non-small cell lung cancer: a systematic
review and meta-analysis. Carcinogenesis, 45(1–2), 1–
22. https://doi.org/10.1093/carcin/bgad091
Murphy, K., van Ginneken, B., Schilham, A. M. R., de
Hoop, B. J., Gietema, H. A., & Prokop, M. (2009). A
large-scale evaluation of automatic pulmonary nodule
detection in chest CT using local image features and k-
nearest-neighbour classification. Medical Image
Analysis, 13(5), 757–770. https://doi.org/10.1016/j.
media.2009.07.001
Peters, A. A., Decasper, A., Munz, J., Klaus, J., Loebelenz,
L. I., Hoffner, M. K. M., Hourscht, C., Heverhagen, J.
T., Christe, A., & Ebner, L. (2021). Performance of an
AI based CAD system in solid lung nodule detection on
chest phantom radiographs compared to radiology
residents and fellow radiologists. Journal of Thoracic
Disease, 13(5), 2728–2737. https://doi.org/10.
21037/jtd-20-3522
Scapicchio, C., Ballante, E., Brero, F., Cabini, R. F.,
Chincarini, A., Fantacci, M. E., ... & Retico, A. (2023).
Integration of a Deep Learning-Based Module for the
Quantification of Imaging Features into the Filling-in
Process of the Radiological Structured Report.
In HEALTHINF (pp. 663-670).
Scapicchio, C., Chincarini, A., Ballante, E., Berta, L., Bicci,
E., Bortolotto, C., Brero, F., Cabini, R. F., Cristofalo,
G., Fanni, S. C., Fantacci, M. E., Figini, S., Galia, M.,
Gemma, P., Grassedonio, E., Lascialfari, A., Lenardi,
C., Lionetti, A., Lizzi, F., … Retico, A. (2023). A
multicenter evaluation of a deep learning software
(LungQuant) for lung parenchyma characterization in
COVID-19 pneumonia. European Radiology
Experimental, 7(1). https://doi.org/10.1186/s41747-
023-00334-z
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., & Batra, D. (2016). Grad-cam: Why did you
say that? visual explanations from deep networks via
gradient-based localization. Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based
Localization, 17, 331–336.
http://arxiv.org/abs/1610.02391
Silva, M., Picozzi, G., Sverzellati, N., Anglesio, S.,
Bartolucci, M., Cavigli, E., Deliperi, A., Falchini, M.,
Falaschi, F., Ghio, D., Gollini, P., Larici, A. R.,
Marchianò, A. V, Palmucci, S., Preda, L., Romei, C.,
Tessa, C., Rampinelli, C., & Mascalchi, M. (2022).
Low-dose CT for lung cancer screening: position paper
from the Italian college of thoracic radiology.
Radiologia Medica, 127(5), 543–559.
https://doi.org/10.1007/s11547-022-01471-y
Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge
Cardoso, M. (2017). (2017). Generalised Dice Overlap
as a Deep Learning Loss Function for Highly
Unbalanced Segmentations. Springer, vol 10553(Deep
Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support).
EXPLAINS 2024 - 1st International Conference on Explainable AI for Neural and Symbolic Methods
138