Figure 9: Sim to real Reference point cloud extraction scheme.
ACKNOWLEDGEMENTS
This work was supported by the “D
´
efi Cl
´
e Robotique
centr
´
ee sur l’humain” funded by La R
´
egion Occitanie,
France.
REFERENCES
Besl, P. and McKay, N. (1992). Method for registration of
3-D shapes. In Sensor Fusion IV: Control Paradigms
and Data Structures, volume 1611. Spie.
Botterill, T., Paulin, S., Green, R., Williams, S., Lin, J.,
Saxton, V., Mills, S., Chen, X., and Corbett-Davies,
S. (2017). A robot system for pruning grape vines.
Journal of Field Robotics, 34(6).
Chaumette, F. and Hutchinson, S. (2006). Visual servo con-
trol. I. basic approaches. IEEE Robotics & Automation
Magazine, 13(4):82–90.
Chen, Y. and Medioni, G. (1992). Object modelling by reg-
istration of multiple range images. Image and Vision
Computing, 10(3).
Choi, S., Zhou, Q.-Y., and Koltun, V. (2015). Robust recon-
struction of indoor scenes. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 5556–5565.
Fitzgibbon, A. (2003). Robust registration of 2D and 3D
point sets. Image and Vision Computing, 21(13-14).
Gursoy, E., Navarro, B., Cosgun, A., Kuli
´
c, D., and Cheru-
bini, A. (2023). Towards vision-based dual arm
robotic fruit harvesting. In 2023 IEEE 19th Interna-
tional Conference on Automation Science and Engi-
neering (CASE), pages 1–6.
Holz, D., Ichim, A., Tombari, F., Rusu, R., and Behnke,
S. (2015). Registration with the point cloud library:
A modular framework for aligning in 3-D. IEEE
Robotics & Automation Magazine, 22(4).
Katyara, S., Ficuciello, F., Caldwell, D., Chen, F., and Si-
ciliano, B. (2021). Reproducible pruning system on
dynamic natural plants for field agricultural robots.
In Saveriano, M., Renaudo, E., Rodr
´
ıguez-S
´
anchez,
A., and Piater, J., editors, Int. Workshop on Human-
Friendly Robotics 2020. Springer.
Li, T., Yu, J., Qiu, Q., and Zhao, C. (2022). Hybrid un-
calibrated visual servoing control of harvesting robots
with RGB-D cameras. IEEE Trans. on Industrial
Electronics.
Marchand, E., Spindler, F., and Chaumette, F. (2005). ViSP
for visual servoing: A generic software platform with
a wide class of robot control skills. IEEE Robotics &
Automation Magazine, 12(4).
Mehta, S., MacKunis, W., and Burks, T. (2014). Nonlinear
robust visual servo control for robotic citrus harvest-
ing. IFAC Proceedings Volumes, 47(3):8110–8115.
Rusinkiewicz, S. (2019). A symmetric objective function
for ICP. ACM Trans. on Graphics, 38(4).
Silwal, A., Yandun, F., Nellithimaru, A., Bates, T., and Kan-
tor, G. (2022). Bumblebee: A path towards fully au-
tonomous robotic vine pruning. Field Robotics, (2).
Yandun, F., Parhar, T., Silwal, A., Clifford, D., Yuan, Z.,
Levine, G., Yaroshenko, S., and Kantor, G. (2021).
Reaching pruning locations in a vine using a deep re-
inforcement learning policy. In IEEE Int. Conf. on
Robotics and Automation (ICRA’2021), Xi’an, China.
You, A., Kolano, H., Parayil, N., Grimm, C., and David-
son, J. (2022). Precision fruit tree pruning using a
learned hybrid vision/interaction controller. In IEEE
Int. Conf. on Robotics and Automation (ICRA’2022),
Philadelphia, PA.
You, A., Sukkar, F., Fitch, R., Karkee, M., and Davidson,
J. R. (2020). An efficient planning and control frame-
work for pruning fruit trees. In 2020 IEEE interna-
tional conference on robotics and automation (ICRA),
pages 3930–3936.
Zahid, A., Mahmud, M. S., He, L., Heinemann, P., Choi, D.,
and Schupp, J. (2021). Technological advancements
towards developing a robotic pruner for apple trees:
A review. Computers and Electronics in Agriculture,
189:106383.
Zhang, S., Gong, Z., Tao, B., and Ding, H. (2020). A
visual servoing method based on point cloud. In
IEEE Int. Conf. on Real-time Computing and Robotics
(RCAR’2020).
Visual Servoing for Vine Pruning Based on Point Cloud Alignment
423