
author expresses the hope that the approach proposed
in the work and the procedures developed will find
both their further theoretical development and fruitful
use in applied problems.
REFERENCES
Al-Obaidi, S., Al-Khafaji, H. and Abhayaratne C. (2021).
Making sense of neuromorphic event data for human
action recognition. In IEEE Access, V. 9, P. 82686–
82700. doi: 10.1109/ACCESS.2021.3085708.
Amri, E., Felk, Y., Stucki, D., Ma, J., Fossum, E. (2016).
Quantum Random Number Generation Using a Quanta
Image Sensor. In Sensors, V. 16(7), P. 1002. doi:
10.3390/s16071002.
Antsiperov, V. (2023). New Centre/Surround Retinex-like
Method for Low-Count Image Reconstruction. In
Proceedings of the 12th International Conference on
Pattern Recognition Applications and Methods
(ICPRAM 2023), SCITEPRESS, P. 517–528. doi:
10.5220/0011792800003411
Antsiperov, V. (2024). Neuromorphic Encoding /
Reconstruction of Images Represented by Poisson
Counts. In Proceedings of the 13th International
Conference on Pattern Recognition Applications and
Methods (ICPRAM 2024), SCITEPRESS. P. 485–493.
doi: 10.5220/0012574100003654.
Antsiperov, V. E. (2024). Adaptive Filtering of Distributed
Data Based on Modeling the Perception Mechanisms of
Living Sensory Systems. In: Vlachos, D. (ed)
Mathematical Modeling in Physical Sciences.
ICMSQUARE 2023. Springer Proceedings in
Mathematics & Statistics, V. 446, P. 19–31. doi:
10.1007/978-3-031-52965-8_2
Asuni, N., Giachetti, A. (2014). TESTIMAGES: a large-
scale archive for testing visual devices and basic image
processing algorithms. In: STAG: Smart Tools & Apps
for Graphics, A. Giachetti (Editor).
Barrett, H. H. and Myers, K. J. (2004). Foundations of Image
Science, John Wiley and Sons, Hoboken.
Buades, A., Coll, B., Morel, J. M. A. (2005). Review of
Image Denoising Algorithms, with a New One.
Multiscale Modeling & Simulation, V. 4(2), P. 490–530.
Doi: 10.1137/040616024.
Christensen, D.V., et al. (2022). 2022 roadmap on
neuromorphic computing and engineering. In
Neuromorph. Comput. Eng., V. 2, P. 022501 doi:
10.1088/2634-4386/ac4a83.
Dargan, S., Kumar, M., Ayyagari, M. R. et al. (2020) A
Survey of Deep Learning and Its Applications: A New
Paradigm to Machine Learning. In Archives of Comput.
Methods in Eng., V. 27, P. 1071–1092.
https://doi.org/10.1007/s11831-019-09344-w.
De Boor, C. (1978) A practical guide to splines. Springer-
Verlag, New York; Berlin.
Elad, M. (2005) Retinex by Two Bilateral Filters. In
Lecture notes in computer science, Springer, Berlin,
Heidelberg, P. 217–229. doi: 10.1007/11408031-19.
Frisby, J. P., Stone, J. V. (2010). Seeing: The computational
approach to biological vision. MIT Press.
Grove, O., Rajab, K., Piegl, et.al. (2011) From CT to
NURBS: Contour Fitting with B-spline Curves. In
Computer-Aided Design and Applications, V. 8(1), P.
3–21. doi: 10.3722/cadaps.2011.3-21.
Jobson, D. J., Rahman, Z., Woodell, G. A. (1997)
Properties and performance of a center/surround
retinex. In IEEE Transactions on Image Processing, V.
6(3), P. 451–462. doi: 10.1109/83.557356
Katz, B. (1982) Stephen William Kuffler, 24 August 1913
- 11 October 1980. In Biographical memoirs of fellows
of the Royal Society, V. 28, P. 225–259. doi:
10.1098/rsbm.1982.0011.
Kingman, J. (1993) Poisson processes. Clarendon Press.
Land, E. H., McCann, J. (1971). Lightness and retinex
theory. In Journal of the Optical Society of America, V.
61(1), P. 1–11. doi: 10.1364/JOSA.61.000001.
Lisani, J.-L., Morel, J.-M., Petro, A.-B., Sbert, C. (2020).
Analyzing center/surround retinex. In Information
sciences, V. 512, P. 741–759. doi: 10.1016/
j.ins.2019.10.009.
Marr, D., Hildreth, E. (1980). Theory of edge detection. In
Proceedings of the Royal Society of London. Series B.
Biological Sciences, V. 207(1167), P. 187–217. doi:
10.1098/rspb.1980.0020.
Masland, R. H. (2001) The fundamental plan of the retina.
In Nature Neuroscience, V. 4(9), P. 877–886. doi:
10.1038/nn0901-877.
Masland, R. (2020). We know it when we see it: what the
neurobiology of vision tells us about how we think.
Basic Books, New York.
Murphy, K. P. (2012) Machine Learning: A Probabilistic
Perspective, 1st ed., MIT Press, Cam-bridge.
Robert, C. P., Casella, G. (2004). Monte Carlo Statistical
Methods, 2nd ed. Springer, New York. doi:
10.1007/978-1-4757-4145-2.
Streit, R. L. (2010). Poisson Point Processes Imaging,
Tracking, and Sensing. Springer. doi: 10.1007/978-1-
4419-6923-1.
Vollmer, J., Mencl, R. and Müller, H. (1999) Improved
Laplacian Smoothing of Noisy Surface Meshes. In
Computer graphics forum, V. 18(3), P. 131–138.
https://doi.org/10.1111/1467-8659.00334
Wang, Y. K., Wang S.E. and Wu, P. H. (2023). Spike-Event
Object Detection for Neuromorphic Vision. In IEEE
Access, V. 11, P. 5215–5230. doi: 10.1109/ACCESS.
2023.3236800.
Young, G. A., Smith R. L. (2005). Essentials of statistical
inference. Cambridge University Press, Cambridge.
Zapp, S. J., Nitsche, S., Gollisch, T. (2022). Retinal
receptive-field substructure: scaffolding for coding and
computation. In Trends Neurosci (Regular ed.) V.
45(6), P. 430–445. doi: 10. 1016/j.tins.2022.03.005.
Zhang, F., and Bull, D. (2021). Measuring and managing
picture quality, In Intelligent Image and Video
Compression 2nd ed. Elsevier Science & Technology.
Zhu S. C. and Wu, Y. N. (2023). Computer Vision
Statistical Models for Marr's Paradigm, 1st ed. Cham:
Springer.
EXPLAINS 2024 - 1st International Conference on Explainable AI for Neural and Symbolic Methods
146