V., Malhotra, A., Dhama, G., and Arora, A. (2022).
Entity alignment for knowledge graphs: progress,
challenges, and empirical studies. arXiv preprint
arXiv:2205.08777.
Chouham, E. M., Espejel, J. L., Alassan, M. S. Y., Dahhane,
W., and Ettifouri, E. H. (2023). Entity identifier: A
natural text parsing-based framework for entity rela-
tion extraction. arXiv preprint arXiv:2307.04892.
Cotovio, P. G., Jimenez-Ruiz, E., and Pesquita, C. (2023).
What can knowledge graph alignment gain with
neuro-symbolic learning approaches? arXiv preprint
arXiv:2310.07417.
Dao, N.-M., Hoang, T. V., and Zhang, Z. (2023).
A benchmarking study of matching algorithms for
knowledge graph entity alignment. arXiv preprint
arXiv:2308.03961.
Dong, K., Sun, A., Kim, J.-J., and Li, X. (2023). Open
information extraction via chunks. arXiv preprint
arXiv:2305.03299.
Dunn, A., Dagdelen, J., Walker, N., Lee, S., Rosen, A. S.,
Ceder, G., Persson, K., and Jain, A. (2022). Struc-
tured information extraction from complex scientific
text with fine-tuned large language models. arXiv
preprint arXiv:2212.05238.
Fanourakis, N., Efthymiou, V., Kotzinos, D., and
Christophides, V. (2023). Knowledge graph em-
bedding methods for entity alignment: experimen-
tal review. Data Mining and Knowledge Discovery,
37(5):2070–2137.
Friedman, S., Magnusson, I., Sarathy, V., and Schmer-
Galunder, S. (2022). From unstructured text to causal
knowledge graphs: A transformer-based approach.
arXiv preprint arXiv:2202.11768.
Hong, Z., Chard, K., and Foster, I. (2024). Combin-
ing language and graph models for semi-structured
information extraction on the web. arXiv preprint
arXiv:2402.14129.
Kamp, S., Fayazi, M., Benameur-El, Z., Yu, S., and Dreslin-
ski, R. (2023). Open information extraction: A review
of baseline techniques, approaches, and applications.
arXiv preprint arXiv:2310.11644.
Liu, P., Gao, W., Dong, W., Huang, S., and Zhang, Y.
(2022). Open information extraction from 2007 to
2022–a survey. arXiv preprint arXiv:2208.08690.
Melnyk, I., Dognin, P., and Das, P. (2022). Knowl-
edge graph generation from text. arXiv preprint
arXiv:2211.10511.
Mihindukulasooriya, N., Tiwari, S., Enguix, C. F., and Lata,
K. (2023). Text2kgbench: A benchmark for ontology-
driven knowledge graph generation from text. In
International Semantic Web Conference, pages 247–
265. Springer.
Motger, Q. and Franch, X. (2024). Nlp-based re-
lation extraction methods in re. arXiv preprint
arXiv:2401.12075.
Pan, J. Z., Razniewski, S., Kalo, J.-C., Singhania, S., Chen,
J., Dietze, S., Jabeen, H., Omeliyanenko, J., Zhang,
W., Lissandrini, M., et al. (2023a). Large language
models and knowledge graphs: Opportunities and
challenges, 2023. arXiv preprint arXiv:2308.06374.
Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., and Wu,
X. (2023b). Unifying large language models and
knowledge graphs: A roadmap, 2023. arXiv preprint
arXiv:2306.08302.
Peng, C., Xia, F., Naseriparsa, M., and Osborne, F. (2023).
Knowledge graphs: Opportunities and challenges. Ar-
tificial Intelligence Review.
Qian, K., Belyi, A., Wu, F., Khorshidi, S., Nikfarjam, A.,
Khot, R., Sang, Y., Luna, K., Chu, X., Choi, E.,
et al. (2023). Open domain knowledge extraction for
knowledge graphs. arXiv preprint arXiv:2312.09424.
Trisedya, B. D., Salim, F. D., Chan, J., Spina, D., Scholer,
F., and Sanderson, M. (2023). i-align: an interpretable
knowledge graph alignment model. Data Mining and
Knowledge Discovery, 37(6):2494–2516.
Van Tong, V., Huynh, T. T., Nguyen, T. T., Yin, H.,
Nguyen, Q. V. H., and Huynh, Q. T. (2021). In-
complete knowledge graph alignment. arXiv preprint
arXiv:2112.09266.
Vogt, L., Kuhn, T., and Hoehndorf, R. (2022). Semantic
units: Organizing knowledge graphs into semantically
meaningful units of representation [internet].
Wadhwa, S., Amir, S., and Wallace, B. C. (2023). Revisiting
relation extraction in the era of large language models.
arXiv preprint arXiv:2305.05003.
Xie, F., Zeng, X., Zhou, B., and Tan, Y. (2023). Improv-
ing knowledge graph entity alignment with graph aug-
mentation. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 3–14. Springer.
Yang, L., Chen, H., Wang, X., Yang, J., Wang, F.-Y., and
Liu, H. (2024). Two heads are better than one: Inte-
grating knowledge from knowledge graphs and large
language models for entity alignment. arXiv preprint
arXiv:2401.16960.
Yu, B., Zhang, Z., Li, J., Yu, H., Liu, T., Sun, J., Li, Y., and
Wang, B. (2022). Towards generalized open informa-
tion extraction. arXiv preprint arXiv:2211.15987.
Zeng, K., Li, C., Hou, L., Li, J., and Feng, L. (2021). A
comprehensive survey of entity alignment for knowl-
edge graphs. AI Open, 2:1–13.
Zhang, R., Su, Y., Trisedya, B. D., Zhao, X., Yang, M.,
Cheng, H., and Qi, J. (2023). Autoalign: fully au-
tomatic and effective knowledge graph alignment en-
abled by large language models. IEEE Transactions
on Knowledge and Data Engineering.
Zhang, R., Trisedy, B. D., Li, M., Jiang, Y., and Qi, J.
(2021). A benchmark and comprehensive survey on
knowledge graph entity alignment via representation
learning. arXiv preprint arXiv:2103.15059.
Knowledge Graphs Can Play Together: Addressing Knowledge Graph Alignment from Ontologies in the Biomedical Domain
423