can be described using polynomial vector fields. Sig-
nificantly, by using the Schur Complement in com-
bination with the sum of squares decomposition, we
provided convex alternatives to bilinear matrix in-
equalities. Using different examples, we highlighted
the effectivity of using our approaches, which also
managed to obtain results that surpassed previous
ones. We believe that the presented approaches have
many potential applications, for example, in the fields
of aerospace and quantum control.
REFERENCES
August, E. (2012). Using noise for model-testing. Journal
of Computational Biology, 19:968–977.
August, E. and Papachristodoulou, A. (2022). Feedback
control design using sum of squares optimisation. Eu-
ropean Journal of Control, page 100683.
Berning Jr, A. (2020). Control and Optimization for
Aerospace Systems with Stochastic Disturbances, Un-
certainties, and Constraints. PhD thesis, University
of Michigan.
Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press, Cambridge, UK.
Cardona, G., Sarlette, A., and Rouchon, P. (2018). Expo-
nential stochastic stabilization of a two-level quantum
system via strict lyapunov control. In 2018 IEEE Con-
ference on Decision and Control, pages 6591–6596.
Carlson, D., Markham, T. L., and Uhlig, F. (1986). Em-
ilie haynsworth, 1916-1985. Linear Algebra and its
Applications, 75:269–276.
Cloutier, J. (1997). State-dependent riccati equation tech-
niques: an overview. In Proceedings of the 1997
American Control Conference (Cat. No.97CH36041),
pages 932–936.
El-Samad, H. and Khammash, M. (2004). Stochastic stabil-
ity and its application to the analysis of gene regula-
tory networks. Proceedings of the American Control
Conference, pages 3001–3006.
Gihman, I. I. and Skorohod, A. V. (1972). Stochastic Dif-
ferential Equations. Springer-Verlag, Berlin.
Hafstein, S., Gudmundsson, S., Giesl, P., and Scalas,
E. (2018). Lyapunov function computation for au-
tonomous linear stochastic differential equations us-
ing sum-of-squares programming. Discrete and Con-
tinuous Dynamical Systems - B, 23(2):939–956.
Iqbal, J., Ullah, M., Khan, S. G., Khelifa, B., and
´
Cukovi
´
c,
S. (2017). Nonlinear control systems - a brief
overview of historical and recent advances. Nonlin-
ear Engineering, 6(4):301–312.
Lavretsky, E. and Wise, K. (2013). Robust and Adap-
tive Control: With Aerospace Applications. Springer-
Verlag London, London, United Kingdom.
Ludyk, G. (2018). Quantum Mechanics in Matrix Form.
Springer, Cham, Switzerland.
Munsky, B., Trinh, B., and Khammash, M. (2009). Lis-
tening to the noise: random fluctuations reveal gene
network parameters. Molecular Systems Biology, 5.
Murty, K. G. and Kabadi, S. N. (1987). Some NP-complete
problems in quadratic and nonlinear programming.
Math. Program., 39:117–129.
Øksendal, B. (2003). Stochastic Differential Equation:
An Introduction with Applications. Springer-Verlag,
Berlin, 6 edition.
Papachristodoulou, A., Anderson, J., Valmorbida, G., Pra-
jna, S., Seiler, P., Parrilo, P. A., Peet, M. M., and Jagt,
D. (2021). SOSTOOLS: Sum of squares optimization
toolbox for MATLAB. http://arxiv.org/abs/1310.4716.
https://github.com/oxfordcontrol/SOSTOOLS.
Parrilo, P. A. (2003). Semidefinite programming relaxations
for semialgebraic problems. Math. Program., Ser. B,
96:293–320.
Rodnishchev, N. and Somov, Y. (2018). Control opti-
mization in aerospace engineering at stochastic per-
turbations and stream of faults. In 2018 5th IEEE
International Workshop on Metrology for AeroSpace
(MetroAeroSpace), pages 171–175.
Schur, I. (1917).
¨
Uber Potenzreihen, die im Inneren des Ein-
heitskreises beschr
¨
ankt sind. J. Reine Angew. Math.,
147:205–232.
Slotine, J. J. E. and Li, W. (1991). Applied Nonlinear Con-
trol. Prentice Hall, Englewood Cliffs, NJ, USA.
Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB tool-
box for optimization over symmetric cones. Optimiza-
tion Methods and Software, 11–12:625–653. Avail-
able at http://sedumi.ie.lehigh.edu.
Ventsel, A. D. and Freidlin, M. I. (1970). On
Small Random Perturbations of Dynamical Systems.
Russ. Math. Surv., 25:1.
Wiseman, H. M. (1994). Quantum theory of continuous
feedback. Phys. Rev. A, 49:2133–2150.
Xu, Y. and Xin, M. (2011). Nonlinear stochastic con-
trol for space launch vehicles. IEEE Transactions on
Aerospace and Electronic Systems, 47(1):98–108.
Application of the Schur Complement in Sum of Squares Optimisation
431