ACKNOWLEDGEMENTS
This work is supported by the Federal Ministry for
Digital and Transport (BMDV) of Germany in the
scope of project AORTA (FKZ: 01MM20002).
REFERENCES
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The cityscapes dataset for semantic urban
scene understanding. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, Las
Vegas, NV, USA, June 27-30, 2016, pages 3213–3223.
Diehl, F., Brunner, T., Truong-Le, M., and Knoll, A. C.
(2019). Graph neural networks for modelling traffic
participant interaction. In 2019 IEEE Intelligent Ve-
hicles Symposium, IV 2019, Paris, France, June 9-12,
2019, pages 695–701. IEEE.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vi-
sion meets robotics: The KITTI dataset. Intl. Journal
of Robotics Research (IJRR), 32(11):1231–1237.
Huang, X., Cheng, X., Geng, Q., Cao, B., Zhou, D., Wang,
P., Lin, Y., and Yang, R. (2018). The apolloscape
dataset for autonomous driving. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition
Workshops, CVPR Workshops, Salt Lake City, USA,
June 18-22, 2018, pages 954–960. IEEE.
Izquierdo, R., Quintanar,
´
A., Lorenzo, J., Daza, I. G., Parra,
I., Llorca, D. F., and Sotelo, M.
´
A. (2021). Vehicle
lane change prediction on highways using efficient en-
vironment representation and deep learning. IEEE Ac-
cess, 9:119454–119465.
Lee, D., Kwon, Y. P., McMains, S., and Hedrick, J. K.
(2017). Convolution neural network-based lane
change intention prediction of surrounding vehicles
for ACC. In 20th IEEE Intl. Conf. on Intelligent Trans-
portation Systems, ITSC 2017, pages 1–6. IEEE.
Li, X., Ying, X., and Chuah, M. C. (2019). GRIP: graph-
based interaction-aware trajectory prediction. In 2019
IEEE Intelligent Transportation Systems Conference,
ITSC 2019, Auckland, New Zealand, October 27-30,
2019, pages 3960–3966. IEEE.
Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S.,
and Urtasun, R. (2020). Learning lane graph represen-
tations for motion forecasting. In ECCV 2020 - 16th
European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part II, volume 12347 of Lecture
Notes in Computer Science, pages 541–556. Springer.
Lin, T., Maire, M., Belongie, S., Bourdev, L. D., Girshick,
R. B., Hays, J., Perona, P., Ramanan, D., Dollar, P.,
and Zitnick, C. L. (2014). Microsoft COCO: common
objects in context. CoRR, abs/1405.0312.
Pan, J., Sun, H., Xu, K., Jiang, Y., Xiao, X., Hu, J., and
Miao, J. (2020). Lane-attention: Predicting vehicles’
moving trajectories by learning their attention over
lanes. In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems, IROS 2020, Las Vegas, NV, USA, Oct.
24, 2020 - Jan. 24, 2021, pages 7949–7956. IEEE.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., K
¨
opf, A., Yang, E. Z.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information
Processing Systems 32: Annual Conf. on Neural In-
formation Processing Systems 2019, NeurIPS 2019,
Vancouver, BC, Canada, pages 8024–8035.
Rama, P. and Bajc¸inca, N. (2022). NIAR: interaction-aware
maneuver prediction using graph neural networks and
recurrent neural networks for autonomous driving. In
Sixth IEEE Intl. Conf. on Robotic Computing, IRC
2022, Italy, Dec. 5-7, 2022, pages 368–375. IEEE.
Rama, P. and Bajc¸inca, N. (2023). MALE-A: stimuli and
cause prediction for maneuver planning via graph neu-
ral networks in autonomous driving. In 2023 IEEE
26th International Conference on Intelligent Trans-
portation Systems, ITSC 2023, Bilbao, Spain, Septem-
ber 24-28, 2023, pages 3545–3550. IEEE.
Ramanishka, V., Chen, Y., Misu, T., and Saenko, K. (2018).
Toward driving scene understanding: A dataset for
learning driver behavior and causal reasoning. In 2018
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, Salt Lake City, USA, June 18-22,
2018, pages 7699–7707. IEEE Computer Society.
Wang, C., Bochkovskiy, A., and Liao, H. M. (2022).
Yolov7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors. In IEEE/CVF
Conf. on Computer Vision and Pattern Recognition,
CVPR 2023, pages 7464–7475. IEEE.
Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z., Li,
M., Zhou, J., Huang, Q., Ma, C., Huang, Z., Guo, Q.,
Zhang, H., Lin, H., Zhao, J., Li, J., Smola, A. J., and
Zhang, Z. (2019). Deep graph library: Towards ef-
ficient and scalable deep learning on graphs. CoRR,
abs/1909.01315.
Wang, Z., Chen, J., and Chen, H. (2021). EGAT: edge-
featured graph attention network. In Artificial Neu-
ral Networks and Machine Learning - ICANN 2021 -
30th Intl. Conf. on Artificial Neural Networks, 2021,
volume 12891, pages 253–264. Springer.
Wei, Z., Wang, C., Hao, P., and Barth, M. J. (2019).
Vision-based lane-changing behavior detection using
deep residual neural network. In 2019 IEEE Intelli-
gent Transportation Systems Conference, ITSC 2019,
pages 3108–3113. IEEE.
Xue, J., Fang, J., Li, T., Zhang, B., Zhang, P., Ye, Z., and
Dou, J. (2019). BLVD: building A large-scale 5d se-
mantics benchmark for autonomous driving. In Intl.
Conf. on Robotics and Automation, ICRA, Montreal,
QC, Canada, May 20-24, 2019, pages 6685–6691.
Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan,
V., and Darrell, T. (2018). BDD100K: A diverse driv-
ing video database with scalable annotation tooling.
CoRR, abs/1805.04687.
Multi-Modal Deep Learning Architecture Based on Edge-Featured Graph Attention Network for Lane Change Prediction
289