Mangaroska, K., & Giannakos, M. (2019). Learning
Analytics for Learning Design: A Systematic Literature
Review of Analytics-Driven Design to Enhance
Learning. IEEE Transactions on Learning
Technologies, 12(4), 516–534. https://doi.org/10.1109/
TLT.2018.2868673
Mizoguchi, R., Sinitsa, K., & Ikeda, M. (1996). Task
Ontology Design for Intelligent Educational/Training
Systems. Workshop on Architectures and Methods for
Designing Cost-Effective and Reusable.
Ouissem, B., Lamia, M., & Hafidi, M. (2021). A Proposed
Ontology-Based Generic Context Model for Ubiquitous
Learning. International Journal of Web-Based
Learning and Teaching Technologies, 16(3), 47–64.
https://doi.org/10.4018/IJWLTT.20210501.oa4
Ouyang, F., Wu, M., Zheng, L., Zhang, L., & Jiao, P. (2023).
Integration of artificial intelligence performance
prediction and learning analytics to improve student
learning in online engineering course. International
Journal of Educational Technology in Higher Education,
20(1), 4. https://doi.org/10.1186/s41239-022-00372-4
Peffers, K., Tuunanen, T., Rothenberger, M. A., &
Chatterjee, S. (2007). A Design Science Research
Methodology for Information Systems Research.
Journal of Management Information Systems, 24(3),
Article 3. https://doi.org/10.2753/MIS0742-1222240302
Pelap, G. F., Fitime, L. F., & Mbaiossoum, B. L. (2023).
Ontology-Based Modeling of the Learner in a Web
Educational System: Towards Learning Analytics and
Adaptive Learning. 8(7).
Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos,
D. (2014). Context Aware Computing for The Internet
of Things: A Survey. IEEE Communications Surveys &
Tutorials, 16(1), 414–454. https://doi.org/10.1109/
SURV.2013.042313.00197
Pozzi, F., Asensio-Perez, J. I., Ceregini, A., Dagnino, F. M.,
Dimitriadis, Y., & Earp, J. (2020). Supporting and
representing Learning Design with digital tools: In
between guidance and flexibility. Technology,
Pedagogy and Education, 29(1), 109–128.
https://doi.org/10.1080/1475939X.2020.1714708
Rahayu, N. W., Ferdiana, R., & Kusumawardani, S. S.
(2022). A systematic review of ontology use in E-
Learning recommender system. Computers and
Education: Artificial Intelligence, 3, 100047.
https://doi.org/10.1016/j.caeai.2022.100047
Ramaswami, G., Susnjak, T., Mathrani, A., & Umer, R.
(2023). Use of Predictive Analytics within Learning
Analytics Dashboards: A Review of Case Studies.
Technology, Knowledge and Learning, 28(3), 959–980.
https://doi.org/10.1007/s10758-022-09613-x
Ramesh, R., M., S., & Iyer, S. (2016). Integrating the
Learning Objectives and Syllabus into a Domain
Ontology for Data structures Course. Proceedings of
the 2016 ACM Conference on Innovation and
Technology in Computer Science Education, 266–271.
https://doi.org/10.1145/2899415.2899453
Reynolds, S., Pate, W. C., & Ochoa, O. (2023). An
Ontology and Management System for Learning
Outcomes and Student Mastery. 2023 IEEE Frontiers
in Education Conference (FIE), 1–5.
https://doi.org/10.1109/FIE58773.2023.10343171
Romero, C., & Ventura, S. (2020). Educational data mining
and learning analytics: An updated survey. WIREs Data
Mining and Knowledge Discovery, 10(3), e1355.
Romero, L., Link to external site, this link will open in a
new window, Saucedo, C., Ma, L. C., & Gutiérrez, M.
(2019). Supporting self-regulated learning and
personalization using ePortfolios: A semantic approach
based on learning paths. International Journal of
Educational Technology in Higher Education, 16(1),
1–16. https://doi.org/10.1186/s41239-019-0146-1
Rowley, J. (2007). The wisdom hierarchy: Representations
of the DIKW hierarchy. Journal of Information
Science, 33(2), 163–180.
Schmitz, M., Van Limbeek, E., Greller, W., Sloep, P., &
Drachsler, H. (2017). Opportunities and Challenges in
Using Learning Analytics in Learning Design. In É.
Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M.
Pérez-Sanagustín (Eds.), Data Driven Approaches in
Digital Education (Vol. 10474, pp. 209–223). Springer
International Publishing. https://doi.org/10.1007/978-
3-319-66610-5_16
Susnjak, T., Ramaswami, G. S., & Mathrani, A. (2022).
Learning analytics dashboard: A tool for providing
actionable insights to learners. International Journal of
Educational Technology in Higher Education, 19(1),
12. https://doi.org/10.1186/s41239-021-00313-7
Tatto, M. T., Rodriguez, M. C., & Reckase, M. (2020).
Early career mathematics teachers: Concepts, methods,
and strategies for comparative international research.
Teaching and Teacher Education, 96, 103118.
https://doi.org/10.1016/j.tate.2020.103118
Verdú, E., Regueras, L. M., Gal, E., de Castro, J. P., Verdú,
M. J., & Kohen-Vacs, D. (2017). Integration of an
intelligent tutoring system in a course of computer
network design. Educational Technology Research and
Development, 65(3), 653–677. https://doi.org/10.1007/
s11423-016-9503-0
Vu, T. M. H., & Tchounikine, P. (2021). Supporting teacher
scripting with an ontological model of task-technique
content knowledge. Computers & Education, 163,
104098.
Vu, T.-M.-H., Le Dinh, T., Dam, N. A. K., & Pham-Nguyen,
C. (2023). Context-aware Knowledge-based Systems: A
Literature Review. https://hdl.handle.net/10125/103190
Wang, Y., & Wang, Y. (2021). A Survey of Ontologies and
Their Applications in e-Learning Environments.
Journal of Web Engineering, 20(6), 1675–1720.
Journal of Web Engineering. https://doi.org/10.13052/
jwe1540-9589.2061
Wei, N., & Shao, X. (2022). A Semantic Model of Internet
of Things for Intelligent Translation and Learning.
Mathematical Problems in Engineering,
2022.
https://doi.org/10.1155/2022/1651288
Wen, Y., Zhu, X., & Zhang, L. (2022). CQACD: A Concept
Question-Answering System for Intelligent Tutoring
Using a Domain Ontology With Rich Semantics. IEEE
Access, 10, 67247–67261. IEEE Access.