Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S.
(2018). Convolutional 2d knowledge graph embed-
dings. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 32.
Di Giovanni, J., Levchenko, A. A., and Ranciere, R. (2011).
Power laws in firm size and openness to trade: Mea-
surement and implications. Journal of International
Economics, 85(1):42–52.
Donoho, D. L. et al. (2000). High-dimensional data analy-
sis: The curses and blessings of dimensionality. AMS
Math Challenges Lecture, 1(2000):32.
Dutta, B., Chatterjee, U., and Madalli, D. P. (2015a). Yamo:
yet another methodology for large-scale faceted ontol-
ogy construction. Journal of Knowledge Management,
19(1):6–24.
Dutta, B., Nandini, D., and Shahi, G. K. (2015b). Mod:
metadata for ontology description and publication.
In Proceedings of the International Conference on
Dublin Core and Metadata Applications. Dublin Core
Metadata Initiative.
Egger, P. H. and Larch, M. (2008). Interdependent preferen-
tial trade agreement memberships: An empirical anal-
ysis. Journal of International Economics, 76(2):384–
399.
Egger, P. H. and Staub, K. E. (2016). Glm estimation of
trade gravity models with fixed effects. Empirical
Economics, 50:137–175.
Fally, T. (2015). Structural gravity and fixed effects. Journal
of International Economics, 97(1):76–85.
Fensel, D. and Fensel, D. (2001). Ontologies. Springer.
Gabaix, X. (2009). Power laws in economics and finance.
Annual Review of Economics, 1(1):255–294.
Gastinger, J., Steinert, N., Gründer-Fahrer, S., and Martin,
M. (2023). Dynamic representations of global crises:
Creation and analysis of a temporal knowledge graph
for conflicts, trade and value networks. In D2R2.
Goyal, P. and Ferrara, E. (2018). Graph embedding tech-
niques, applications, and performance: A survey.
Knowledge-Based Systems, 151:78–94.
Gurevich, T. and Herman, P. (2018). The dynamic gravity
dataset: 1948-2016. US International Trade Commis-
sion, Office of Economics Working Paper.
Hayek, F. (1945). The use of knowledge in society. Ameri-
can Economic Review, 35(4).
Head, K. and Mayer, T. (2014). Gravity equations:
Workhorse, toolkit, and cookbook. In Handbook of
International Economics, volume 4, pages 131–195.
Elsevier.
Hinloopen, J. and van Marrewijk, C. (2006). Comparative
advantage, the rank-size rule, and Zipf’s law. .
Kun, K. W., Liu, X., Racharak, T., Sun, G., Chen, J., Ma, Q.,
and Nguyen, L.-M. (2023). Weext: A framework of
extending deterministic knowledge graph embedding
models for embedding weighted knowledge graphs.
IEEE Access.
Mayer, T. and Zignago, S. (2011). Notes on CEPII’s dis-
tances measures: The geodist database. .
Meng, L. (2022). [retracted] information extraction
and knowledge graph construction for enterprises in
china’s free trade zone. Security and Communication
Networks, 2022(1):2962545.
Menger, C. (1871). Grundsätze der Volkswirtschaftslehre.
Braumüller.
Peters, O. (2019). The ergodicity problem in economics.
Nature Physics, 15(12):1216–1221.
Quan, J. (2022). Visualization and analysis model
of industrial economy status and development
based on knowledge graph and deep neural net-
work. Computational Intelligence and Neuroscience,
2022(1):7008093.
Raudenbush, S. W. and Bryk, A. S. (2002). Hierarchical
linear models: Applications and data analysis meth-
ods, volume 1. Sage.
Rincon-Yanez, D., Mouakher, A., and Senatore, S. (2023a).
Enhancing downstream tasks in knowledge graphs
embeddings: A complement graph-based approach
applied to bilateral trade. Procedia Computer Science,
225:3692–3700.
Rincon-Yanez, D., Ounoughi, C., Sellami, B., Kalvet, T.,
Tiits, M., Senatore, S., and Yahia, S. B. (2023b). Ac-
curate prediction of international trade flows: Lever-
aging knowledge graphs and their embeddings. Jour-
nal of King Saud University-Computer and Informa-
tion Sciences, 35(10):101789.
Santos Silva, J. and Tenreyro, S. (2006). The log of gravity.
The Review of Economics and Statistics, 88(4):641–
658.
Schumpeter, J. (1933). The common sense of econometrics.
Econometrica, pages 5–12.
Sellami, B., Ounoughi, C., Kalvet, T., Tiits, M., and
Rincon-Yanez, D. (2024). Harnessing graph neural
networks to predict international trade flows. Big Data
and Cognitive Computing, 8(6):65.
Shahi, G. K. (2023). Fakekg: a knowledge graph of fake
claims for improving automated fact-checking (stu-
dent abstract). In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pages 16320–
16321.
Shao, L., Duan, Y., Sun, X., Zou, Q., Jing, R., and Lin,
J. (2017). Bidirectional value driven design between
economical planning and technical implementation
based on data graph, information graph and knowl-
edge graph. In 2017 IEEE 15th International Confer-
ence on Software Engineering Research, Management
and Applications (SERA), pages 339–344. IEEE.
Taleb, N. N. (2020). Statistical consequences of fat tails:
Real world preasymptotics, epistemology, and appli-
cations. arXiv preprint arXiv:2001.10488.
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and
Bouchard, G. (2016). Complex embeddings for sim-
ple link prediction. In International Conference on
Machine Learning, pages 2071–2080. PMLR.
Uschold, M. and Gruninger, M. (1996). Ontologies: Princi-
ples, methods and applications. The Knowledge Engi-
neering Review, 11(2):93–136.
Wang, Q., Mao, Z., Wang, B., and Guo, L. (2017). Knowl-
edge graph embedding: A survey of approaches and
applications. IEEE Transactions on Knowledge and
Data Engineering, 29(12):2724–2743.
KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development
72