
ACKNOWLEDGMENTS
In our work, we used ChatGPT prompts as a
tool to abstract themes from specific keywords.
This research was supported by the EQUAVEL
project PID2022-137646OB-C31, funded by MI-
CIU/AEI/10.13039/501100011033 and by FEDER,
UE.
REFERENCES
Aarsen et al. (2023). Documentation Natural Lan-
guage Toolkit. Accessed July 3, 2023, from
https://www.nltk.org/.
Arya, N. (2022). TF-IDF Defined. Accessed April 11, 2024,
from https://www.kdnuggets.com/2022/10/tfidf-
defined.html.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of Machine Learning Re-
search, 3(Jan):993–1022.
Braun, V. and Clarke, V. (2006). Using thematic analysis
in psychology. Qualitative Research in Psychology,
3(2):77–101. DOI: 10.1191/1478088706qp063oa.
Britannica, The Editors of Encyclopaedia (February 9,
2024). X. Accessed April 10, 2024, from
https://www.britannica.com/money/Twitter.
F
¨
utterer, T., Hoch, E., St
¨
urmer, K., Lachner, A., Fischer,
C., and Scheiter, K. (2021). Was bewegt Lehrperso-
nen w
¨
ahrend der Schulschließungen? – Eine Anal-
yse der Kommunikation im Twitter-Lehrerzimmer
¨
uber Chancen und Herausforderungen digitalen Un-
terrichts. Zeitschrift fur Erziehungswissenschaft : ZfE,
24(2):443–477. DOI: 10.1007/s11618-021-01013-8.
Graells-Garrido, E., Baeza-Yates, R., and Lalmas, M.
(2019). How representative is an abortion debate on
twitter? In Boldi, P., editor, Proceedings of the 10th
ACM Conference on Web Science, ACM Digital Li-
brary, pages 133–134, New York,NY,United States.
Association for Computing Machinery.
Grill, M., Mascolo, G., Munzinger, P., Zick, T.
(2022). Deutschlands Problemzone: Corona
und Schulen. Accessed April 14, 2024, from
https://www.sueddeutsche.de/projekte/artikel/politik/
corona-und-die-schulen-deutschlands-problemzone-
e671108/.
Huber, S. G. (2021). Schooling and Education in Times of
the COVID-19 Pandemic: Food for Thought and Re-
flection Derived From Results of the School Barom-
eter in Germany, Austria and Switzerland. Interna-
tional Studies in Educational Administration (Com-
monwealth Council for Educational Administration &
Management (CCEAM)), 49(1).
Mayring, P. (2015). Qualitative Content Analysis: Theoreti-
cal Background and Procedures. Approaches to Qual-
itative Research in Mathematics Education, pages
365–380. DOI: 10.1007/978-94-017-9181-6
13.
Mohammad, S. M. and Turney, P. D. (2013). NRC emotion
lexicon. DOI: 10.4224/21270984.
OpenAI (2022). Introducing ChatGPT. Accessed April 15,
2024, from https://openai.com/blog/chatgpt.
Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. (2007). A Design Science Research Method-
ology for Information Systems Research. Journal of
Management Information Systems, 24(3):45–77. DOI:
10.2753/MIS0742-1222240302.
Rauschenberger, M. and Baeza-Yates, R. (2020). How
to Handle Health-Related Small Imbalanced Data in
Machine Learning? i-com, 19(3):215–226. DOI:
10.1515/icom-2020-0018.
ˇ
Reh
˚
u
ˇ
rek, R. (December 21, 2022). GENSIM: Topic mod-
elling for humans. Accessed July 3, 2023, from
https://radimrehurek.com/gensim/index.html.
twarc (2024). twarc2. Accessed March 25,
2024, from https://twarc-project.readthedocs.io/
en/latest/twarc2 en us/.
Twitter (2023). Twitter API. Accessed July 8, 2023, from
https://developer.twitter.com/en/docs/twitter-api.
Wartena, C. (2019). A Probabilistic Morphology Model for
German Lemmatization. DOI: 10.25968/OPUS-1527.
Webb, H., Jirotka, M., Stahl, B. C., Housley, W., Edwards,
A., Williams, M., Procter, R., Rana, O., and Burnap,
P. (2017). The ethical challenges of publishing twitter
data for research dissemination. In Boldi, P., editor,
Proceedings of the 2017 ACM on Web Science Con-
ference, ACM Digital Library, pages 339–348, New
York, NY. ACM. DOI: 10.1145/3091478.3091489.
Weigand, A. C., Jacob, M. F., Rauschenberger, M., and
Escalona Cuaresma, M. J. (2024). Research Proto-
col for Analyzing Tweets Using Topic Modeling and
ChatGPT: What We Can Learn About Teachers and
Topics During COVID-19 Pandemic-Related School
Closures. DOI: 10.13140/RG.2.2.12205.91367.
Xue, J., Chen, J., Chen, C., Zheng, C., Li, S., and
Zhu, T. (2020a). Public discourse and sentiment
during the COVID 19 pandemic: Using Latent
Dirichlet Allocation for topic modeling on Twit-
ter. PloS one, 15(9):e0239441. DOI: 10.1371/jour-
nal.pone.0239441.
Xue, J., Chen, J., Hu, R., Chen, C., Zheng, C., Su, Y., and
Zhu, T. (2020b). Twitter Discussions and Emotions
About the COVID-19 Pandemic: Machine Learn-
ing Approach. Journal of medical Internet research,
22(11):e20550. DOI: 10.2196/20550.
Analyzing Tweets Using Topic Modeling and ChatGPT: What We Can Learn About Teachers and Topics During COVID-19
Pandemic-Related School Closures
357