de Dios, J.-A. M. and Mezura-Montes, E. (2022). Meta-
heuristics: A julia package for single- and multi-
objective optimization. JOSS, 7(78):4723.
Delahaye, D., Chaimatanan, S., and Mongeau, M. (2019).
Simulated annealing: From basics to applications. In
Handbook of Metaheuristics, pages 1–35. Springer.
Detorakis, G. and Burton, A. (2019). Gaim: A c++ li-
brary for genetic algorithms and island models. JOSS,
4(44):1839.
Eiben, A. E. and Smith, J. E. (2003). Introduction to Evolu-
tionary Computing. Springer, Berlin, Germany.
Forrester, A. I. J., Sóbester, A., and Keane, A. J. (2008).
Appendix: Example problems. In Engineering Design
via Surrogate Modelling: A Practical Guide, pages
195–203. Wiley.
Free Software Foundation (2007). Gnu general public li-
cense. https://www.gnu.org/licenses/gpl-3.0.en.html.
Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., USA.
Gijsbers, P. and Vanschoren, J. (2019). Gama: Genetic auto-
mated machine learning assistant. JOSS, 4(33):1132.
GitHub (2024a). CodeQL. https://codeql.github.com/.
GitHub (2024b). Dependabot. https://github.com/
dependabot/dependabot-core.
GitHub (2024c). Github actions. https://github.com/
features/actions.
Goldberg, D. E. and Lingle, R. (1985). Alleles, loci, and the
traveling salesman problem. In ICGA, pages 154–159.
Gomes, C. P., Selman, B., and Kautz, H. (1998). Boosting
combinatorial search through randomization. In AAAI,
pages 431–437.
Google (2024). Google java style guide. https://google.
github.io/styleguide/.
Gramacy, R. B. and Lee, H. K. H. (2012). Cases for the
nugget in modeling computer experiments. Statistics
and Computing, 22(3):713–722.
Grasas, A., Juan, A. A., Faulin, J., de Armas, J., and Ramal-
hinho, H. (2017). Biased randomization of heuristics
using skewed probability distributions: A survey and
some applications. CAIE, 110:216–228.
Hinterding, R. (1995). Gaussian mutation and self-adaption
for numeric genetic algorithms. In CEC, pages 384–
389.
Hoffmann, M. R., Janiczak, B., and Mandrikov, E. (2024).
JaCoCo java code coverage library. https://www.
jacoco.org/jacoco/.
Holland, J. (1993). Royal road functions. Internet Genetic
Algorithms Digest, 7(22).
Hoos, H. H. and Stützle, T. (2018). Stochastic local search.
In Handbook of Approximation Algorithms and Meta-
heuristics Methologies and Traditional Applications,
chapter 17. Chapman and Hall/CRC, 2nd edition.
Hubin, A. (2019). An adaptive simulated annealing em
algorithm for inference on non-homogeneous hidden
markov models. In AIIPCC, pages 1–9.
Izzo, D. and Biscani, F. (2020). dcgp: Differentiable
cartesian genetic programming made easy. JOSS,
5(51):2290.
Jenetics (2024). Jenetics: Genetic algorithm, genetic
programming, evolutionary algorithm, and multi-
objective optimization. https://jenetics.io/.
Jones, T. (1994). A description of holland’s royal road func-
tion. Evolutionary Computation, 2(4):409–415.
Langley, P. (1992). Systematic and nonsystematic search
strategies. In AIPS, pages 145–152.
Liang, J., Ban, X., Yu, K., Qu, B., Qiao, K., Yue, C., Chen,
K., and Tan, K. C. (2023). A survey on evolutionary
constrained multiobjective optimization. IEEE TEVC,
27(2):201–221.
Lin, S. (1965). Computer solutions of the traveling sales-
man problem. The Bell System Technical Journal,
44(10):2245–2269.
Luby, M., Sinclair, A., and Zuckerman, D. (1993). Opti-
mal speedup of las vegas algorithms. Inf Process Lett,
47(4):173–180.
Mitchell, M. (1998). An Introduction to Genetic Algo-
rithms. MIT Press, Cambridge, MA.
Mitchell, M., Forrest, S., and Holland, J. (1992). The royal
road for genetic algorithms: Fitness landscapes and ga
performance. In ECAL.
Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., and
Coello, C. A. C. (2014). A survey of multiobjective
evolutionary algorithms for data mining: Part i. IEEE
TEVC, 18(1):4–19.
National Academies (2019). Reproducibility and Replica-
bility in Science. National Academies Press, Washing-
ton, DC.
Neri, F. and Cotta, C. (2012). Memetic algorithms and
memetic computing optimization: A literature review.
Swarm and Evolutionary Computation, 2:1–14.
Nesmachnow, S., Luna, F., and Alba, E. (2015). An em-
pirical time analysis of evolutionary algorithms as c
programs. Softw Pract Exp, 45(1):111–142.
Oliver, I. M., Smith, D. J., and Holland, J. R. C. (1987). A
study of permutation crossover operators on the trav-
eling salesman problem. In Int Conf on Genetic Algo-
rithms and Their Application, pages 224–230.
Petke, J., Haraldsson, S. O., Harman, M., Langdon, W. B.,
White, D. R., and Woodward, J. R. (2018). Genetic
improvement of software: A comprehensive survey.
IEEE TEVC, 22(3):415–432.
Pizzuti, C. (2018). Evolutionary computation for commu-
nity detection in networks: A review. IEEE TEVC,
22(3):464–483.
Ponsich, A., Jaimes, A. L., and Coello, C. A. C. (2013).
A survey on multiobjective evolutionary algorithms
for the solution of the portfolio optimization problem
and other finance and economics applications. IEEE
TEVC, 17(3):321–344.
Prügel-Bennett, A. (2004). When a genetic algorithm out-
performs hill-climbing. TCS, 320(1):135–153.
Scott, E. O. and Luke, S. (2019). Ecj at 20: Toward a gen-
eral metaheuristics toolkit. In GECCO, pages 1391–
1398.
Selman, B. and Gomes, C. P. (2006). Hill-climbing search.
In Encyclopedia of Cognitive Science, pages 333–336.
Wiley.
ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications
336