
dynamic time decay. The J. of Supercomputing, 77(1), 
244–262. https://doi.org/10.1007/s11227-020-03266-2 
Chin, J. Y., Chen,  Y., & Cong, G. (2022). The Datasets 
Dilemma:  How  Much  Do  We  Really  Know  About 
Recommendation  Datasets?  Proceedings  of  the 
Fifteenth  ACM  International  Conference  on  Web 
Search  and  Data  Mining,  141–149. 
https://doi.org/10.1145/3488560.3498519 
Fareed,  A.,  Hassan,  S.,  Belhaouari,  S.  B.,  &  Halim,  Z. 
(2023).  A  collaborative  filtering  recommendation 
framework utilizing social networks. Machine Learning 
with  Applications,  14,  100495. 
https://doi.org/10.1016/j.mlwa.2023.100495 
Felfernig,  A.,  Boratto,  L.,  Stettinger,  M.,  &  Tkalčič,  M. 
(2018). Evaluating Group Recommender Systems. In 
A. Felfernig, L. Boratto, M. Stettinger, & M. Tkalčič, 
Group Recommender Systems (pp. 59–71). Springer. 
https://doi.org/10.1007/978-3-319-75067-5_3 
Fkih,  F.  (2022).  Similarity  measures  for  Collaborative 
Filtering-based  Recommender  Systems:  Review  and 
experimental  comparison.  Journal  of  King  Saud 
University  –  Comp.  and  Inf.  Sciences,  34(9),  7645–
7669. https://doi.org/10.1016/j.jksuci.2021.09.014 
Guo,  G.,  Zhang,  J.,  Thalmann,  D.,  &  Yorke-Smith,  N. 
(2014).  ETAF:  An  extended  trust  antecedents 
framework  for  trust  prediction.  2014  IEEE/ACM 
International  Conference  on  Advances  in  Social 
Networks  Analysis  and  Mining,  540–547. 
https://doi.org/10.1109/ASONAM.2014.6921639 
Harper, F. M., & Konstan, J. A. (2016). The MovieLens 
Datasets: History and Context. ACM Transactions on 
Interactive  Intelligent  Systems,  5(4),  1–19. 
https://doi.org/10.1145/2827872 
Jain, G., Mahara, T., & Sharma, S. C. (2023). Performance 
Evaluation of Time-based Recommendation System in 
Collaborative Filtering Technique. Procedia Computer 
Science,  218,  1834–1844.  https://doi.org/10.1016/j. 
procs.2023.01.161 
Krichene, W., & Rendle, S. (2020). On Sampled Metrics 
for  Item  Recommendation.  Proceedings  of  the  26th 
ACM  SIGKDD  International  Conference  on 
Knowledge  Discovery  &  Data  Mining,  1748–1757. 
https://doi.org/10.1145/3394486.3403226 
Li, D., Jin, R., Gao, J., & Liu, Z. (2020). On Sampling Top-
K  Recommendation  Evaluation.  Proceedings  of  the 
26th  ACM  SIGKDD  International  Conference  on 
Knowledge  Discovery  &  Data  Mining,  2114–2124. 
https://doi.org/10.1145/3394486.3403262 
Margaris,  D.,  Sgardelis,  K.,  Spiliotopoulos,  D.,  & 
Vassilakis,  C.  (2024).  Exploiting  Rating  Prediction 
Certainty  for  Recommendation  Formulation  in 
Collaborative  Filtering.  Big  Data  and  Cognitive 
Computing,  8(6),  53.  https://doi.org/10.3390/ 
bdcc8060053 
Margaris, D., Vassilakis, C., & Spiliotopoulos, D. (2020). 
What makes a review a reliable rating in recommender 
systems?  Inf.  Processing  &  Management,  57(6), 
102304. https://doi.org/10.1016/j.ipm.2020.102304 
Margaris, D., Vassilakis, C., & Spiliotopoulos, D. (2022). 
On Producing  Accurate Rating Predictions  in  Sparse 
Collaborative  Filtering  Datasets.  Information,  13(6), 
302. https://doi.org/10.3390/info13060302 
Nguyen,  L.  V.,  Vo,  Q.-T.,  &  Nguyen,  T.-H.  (2023). 
Adaptive KNN-Based Extended Collaborative Filtering 
Recommendation  Services.  Big  Data  and  Cognitive 
Computing,  7(2),  106.  https://doi.org/10.3390/ 
bdcc7020106 
Ni,  J.,  Li,  J.,  &  McAuley,  J.  (2019).  Justifying 
Recommendations  using  Distantly-Labeled  Reviews 
and  Fine-Grained  Aspects.  Proceedings  of  the  2019 
Conference on Empirical Methods in Natural Language 
Processing and the 9th International Joint Conference 
on  Natural  Language  Processing  (EMNLP-IJCNLP), 
188–197. https://doi.org/10.18653/v1/D19-1018 
Sen, R., Goswami, S., & Chakraborty, B. (2019). Jeffries-
Matusita distance as a tool for feature selection. 2019 
International  Conference  on  Data  Science  and 
Engineering (ICDSE), 15–20. https://doi.org/10.1109/ 
ICDSE47409.2019.8971800 
Singh, P. K., Sinha, M., Das, S., & Choudhury, P. (2020). 
Enhancing  recommendation  accuracy  of  item-based 
collaborative filtering using Bhattacharyya coefficient 
and most  similar  item.  Applied Intel.,  50(12),  4708–
4731. https://doi.org/10.1007/s10489-020-01775-4 
Spiliotopoulos, D., Margaris, D., & Vassilakis, C. (2022). 
On Exploiting Rating Prediction Accuracy Features in 
Dense  Collaborative  Filtering  Datasets.  Information, 
13(9), 428. https://doi.org/10.3390/info13090428 
Trattner, C., Said, A., Boratto, L., & Felfernig, A. (2024). 
Evaluating  Group  Recommender  Systems.  In  A. 
Felfernig,  L.  Boratto,  M.  Stettinger,  &  M.  Tkalčič 
(Eds.),  Group  Recommender  Systems  (pp.  63–75). 
Springer  Nature  Switzerland.  https://doi.org/10.1007/ 
978-3-031-44943-7_3 
Vuong Nguyen, L., Nguyen, T., Jung, J. J., & Camacho, D. 
(2021).  Extending  collaborative  filtering 
recommendation  using  word  embedding:  A  hybrid 
approach. Concurrency and Computation: Practice and 
Experience,  35(16),  e6232.  https://doi.org/10.1002/ 
cpe.6232 
Wang,  D.,  Yih,  Y.,  &  Ventresca,  M.  (2020).  Improving 
neighbor-based collaborative filtering by using a hybrid 
similarity  measurement.  Exp.  Syst.  with  Appl.,  160, 
113651. https://doi.org/10.1016/j.eswa.2020.113651 
Wang, R., Wu, Z., Lou, J., & Jiang, Y. (2022). Attention-
based dynamic user modeling and Deep Collaborative 
filtering  recommendation.  Expert  Systems  with 
Applications,  188,  116036.  https://doi.org/10.1016/j. 
eswa.2021.116036 
Wang,  Z.  (2023).  Intelligent  recommendation  model  of 
tourist places based on collaborative filtering and user 
preferences. Applied Artificial Intel., 37(1), 2203574. 
https://doi.org/10.1080/08839514.2023.2203574 
Zhang,  L.,  Li,  Z.,  &  Sun,  X.  (2021).  Iterative  rating 
prediction  for  neighborhood-based  collaborative 
filtering.  Applied  Intelligence,  51(10),  6810–6822. 
https://doi.org/10.1007/s10489-021-02237-1 
Improving Recommendation Quality in Collaborative Filtering by Including Prediction Confidence Factors
379