Ceballos, J., Coloma, N., Di Teodoro, A., and Ochoa-
Tocachi, D. (2020). Generalized fractional cauchy–
riemann operator associated with the fractional
cauchy–riemann operator. Advances in Applied Clif-
ford Algebras, 30(5):1–22.
Ceballos, J., Coloma, N., Di Teodoro, A., Ochoa-Tocachi,
D., and Ponce, F. (2022). Fractional multicomplex
polynomials. Complex Analysis and Operator Theory,
16(4):1–30.
Chen, C.-T. (1999). Linear system theory and design. Ox-
ford University Press.
Contreras, E Di Teodoro, A. M. M. Fractional einstein field
equations in 2+1 dimensional spacetime. preprint to
be published.
Di Teodoro, A., Ochoa-Tocachi, D., Aboukheir, H., and
Camacho, O. (2022). Sliding-mode controller based
on fractional order calculus for chemical processes.
In 2022 IEEE International Conference on Automa-
tion/XXV Congress of the Chilean Association of Au-
tomatic Control (ICA-ACCA), pages 1–6. IEEE.
Forssell, U. and Ljung, L. (1999). Closed-loop identifica-
tion revisited. Automatica, 35(7):1215–1241.
Goodwin, G. C., Graebe, S. F., Salgado, M. E., et al. (2001).
Control system design, volume 240. Prentice Hall Up-
per Saddle River.
Keviczky, L. and B
´
any
´
asz, C. (2007). Future of the
smith predictor based regulators comparing to youla
parametrization. In 2007 Mediterranean Conference
on Control & Automation, pages 1–5. IEEE.
Kilbas, A. A., Marichev, O., and Samko, S. (1993). Frac-
tional integrals and derivatives (theory and applica-
tions).
Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J.
(2006). Theory and applications of fractional differ-
ential equations, volume 204. elsevier.
Ku
ˇ
cera, V. (2007). Polynomial control: past, present, and
future. International Journal of Robust and Nonlinear
Control: IFAC-Affiliated Journal, 17(8):682–705.
Mahtout, I., Navas, F., Milan
´
es, V., and Nashashibi, F.
(2020). Advances in youla-kucera parametrization: A
review. Annual Reviews in Control, 49:81–94.
Palacios, J., Teodoro, A. D., Fuenmayor, E., and Contreras,
E. (2023). A fractional matter sector for general rela-
tivity. The European Physical Journal C, 83(10):894.
Petr
´
a
ˇ
s, I. and Petr
´
a
ˇ
s, I. (2011). Stability of fractional-order
systems. Fractional-Order Nonlinear Systems: Mod-
eling, Analysis and Simulation, pages 55–101.
Podlubny, I. (1994). Fractional-order systems and
fractional-order controllers. Institute of Experimen-
tal Physics, Slovak Academy of Sciences, Kosice,
12(3):1–18.
Ranganayakulu, R., Babu, G. U. B., Rao, A. S., and Patle,
D. S. (2016). A comparative study of fractional or-
der piλ/piλdµ tuning rules for stable first order plus
time delay processes. Resource-Efficient Technolo-
gies, 2:S136–S152.
Smith, C. A. and Corripio, A. B. (2005). Principles and
practices of automatic process control. John wiley &
sons.
Stein, E. M. and Shakarchi, R. (2009). Real analysis: mea-
sure theory, integration, and Hilbert spaces. Princeton
University Press.
Tavazoei, M. and Asemani, M. H. (2020). On robust stabil-
ity of incommensurate fractional-order systems. Com-
munications in Nonlinear Science and Numerical Sim-
ulation, 90:105344.
Tepljakov, A., Alagoz, B. B., Yeroglu, C., Gonzalez, E. A.,
Hosseinnia, S. H., Petlenkov, E., Ates, A., and Cech,
M. (2021). Towards industrialization of fopid con-
trollers: A survey on milestones of fractional-order
control and pathways for future developments. IEEE
Access, 9:21016–21042.
Tepljakov, A. and Tepljakov, A. (2017). Fom-
con: fractional-order modeling and control toolbox.
Fractional-order modeling and control of dynamic
systems, pages 107–129.
Valderrama, F., Ruiz, F., Vicino, A., and Garulli, A. (2020).
A youla-kucera parametrization for data-driven con-
trollers tuning. IFAC-PapersOnLine, 53(2):3989–
3994.
Youla, D., Bongiorno, J., and Jabr, H. (1976). Modern
wiener–hopf design of optimal controllers part i: The
single-input-output case. IEEE Transactions on Auto-
matic Control, 21(1):3–13.
An Approach for Fractional Commensurate Order Youla Parametrization using q-weighted Operator
713