REFERENCES
Kuhn, T. S. (1962). The Structure of Scientific Revolutions.
University of Chicago Press. https://doi.org/10.7208/
chicago/9780226458106.001.0001
Sarawagi, S. (2008). Information extraction. Foundations
and Trends® in Databases, 1(3), 261-377.
Martinez-Rodriguez, J. L., Lopez-Arevalo, I., & Rios-
Alvarado, A. B. (2018). Openie-based approach for
knowledge graph construction from text. Expert
Systems with Applications, 113, 339-355.
Chowdhary, K., & Chowdhary, K. R. (2020). Natural
language processing. Fundamentals of artificial
intelligence, 603-649.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), 4171-4186. https://doi.org/10.18653/v1/N19-
1423
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V.
(2019). RoBERTa: A robustly optimized BERT
pretraining approach. arXiv preprint
arXiv:1907.11692.https://arxiv.org/abs/1907.11692
He, P., Liu, X., Gao, J., & Chen, W. (2020). Deberta:
Decoding-enhanced bert with disentangled attention.
arXiv preprint arXiv:2006.03654.
Chen, Y., Zhang, Y., Hu, C., & Huang, Y. (2021). Jointly
extracting explicit and implicit relational triples with
reasoning pattern enhanced binary pointer network. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (pp. 5694-5703).
OpenAI. (2023). GPT-4 Technical Report. arXiv preprint
arXiv:2303.08774.
Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M. A., Lacroix, T., ... & Lample, G. (2023). LLaMA:
Open and Efficient Foundation Language Models.
arXiv preprint arXiv:2302.13971.
Zeng, A., Liu, X., Du, Z., Wang, Z., Lai, H., Ding, M., ... &
Tang, J. (2023). GLM-130B: An Open Bilingual Pre-
trained Model. arXiv preprint arXiv:2210.02414.
Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M. A., Lacroix, T., ... & Lample, G. (2023). Llama:
Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971.
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig,
G. (2023). Pre-train, prompt, and predict: A systematic
survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9), 1-35.
Reynolds, L., & McDonell, K. (2021). Prompt
programming for large language models: Beyond the
few-shot paradigm. In Extended abstracts of the 2021
CHI conference on human factors in computing
systems (pp. 1-7).
Alvesson, M., & Sandberg, J. (2013). Constructing research
questions: Doing interesting research.
Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A.,
Helbing, D., Milojević, S., ... & Barabási, A. L. (2018).
Science of science. Science, 359(6379), eaao0185.
Safaya, A., Abdullatif, M., & Yuret, D. (2020). Kuisail at
semeval-2020 task 12: Bert-cnn for offensive speech
identification in social media. arXiv preprint
arXiv:2007.13184.
Li, X., Zhang, Z., Liu, Y., Cheng, J., Tian, X., Wang, S.,
Su, X., Wang, R., & Zhang, T. (2023). A study on the
method of identifying research question sentences in
scientific articles. Library and Information Service,
67(09), 132-140. https://doi.org/10.13266/j.issn.0252-
3116.2023.09.014
Mei, X., Wu, X., Huang, Z., Wang, Q., & Wang, J. (2023).
A multi-scale semantic collaborative patent text
classification model based on RoBERTa. Computer
Engineering & Science, 45(05), 903-910.
Su, J., Lu, Y., Pan, S., Wen, B., & Liu, Y. (2021).
RoFormer: Enhanced transformer with rotary position
embedding. arXiv preprint arXiv:2104.09864.
Devillers, M., Saulnier, P., Scialom, T., Martinet, J.,
Matussière, S., Parcollet, T., ... & Staiano, J. (2023).
Mistral: A Strong, Efficient, and Controllable Multi-
task Language Model. arXiv preprint
arXiv:2304.08582. https://arxiv.org/abs/2304.08582
Wu, J., Li, D., Li, S., Fu, T., Chen, K., Wang, C., ... &
Zhang, Z. (2023). Baichuan 2: Open Large-scale
Language Models. arXiv preprint arXiv:2304.09070.
https://arxiv.org/abs/2304.09070
Zeng, A., Liu, X., Du, Z., Wang, Z., Lai, H., Ding, M., ... &
Tang, J. (2022). Glm-130b: An open bilingual pre-
trained model.arXiv preprint arXiv:2210.02414.
Cai, Z., Cao, M., Chen, H., Chen, K., Chen, K., Chen, X.,
... & Lin, D. (2024). Internlm2 technical report. arXiv
preprint arXiv:2403.17297.
Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M. A., Lacroix, T., ... & Lample, G. (2023). Llama:
Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971.
Reimers, N. (2019). Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks. arXiv
preprint arXiv:1908.10084.
KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval
464