Cattaneo, D., Vaghi, M., Ballardini, A. L., Fontana, S.,
Sorrenti, D. G., and Burgard, W. (2019). Cmrnet:
Camera to lidar-map registration. In 2019 IEEE In-
telligent Transportation Systems Conference (ITSC),
pages 1283–1289.
Cattaneo, D., Vaghi, M., Fontana, S., Ballardini, A. L., and
Sorrenti, D. G. (2020). Global visual localization in
lidar-maps through shared 2d-3d embedding space. In
2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 4365–4371.
Deng, H., Bui, M., Navab, N., Guibas, L., Ilic, S., and
Birdal, T. (2022). Deep bingham networks: Dealing
with uncertainty and ambiguity in pose estimation. In-
ternational Journal of Computer Vision, pages 1–28.
Feng, M., Hu, S., Ang, M. H., and Lee, G. H. (2019). 2d3d-
matchnet: Learning to match keypoints across 2d im-
age and 3d point cloud. In 2019 International Con-
ference on Robotics and Automation (ICRA), pages
4790–4796.
Fort, S., Hu, H., and Lakshminarayanan, B. (2019). Deep
ensembles: A loss landscape perspective. arXiv
preprint arXiv:1912.02757.
Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian
approximation: Representing model uncertainty in
deep learning. In Balcan, M. F. and Weinberger,
K. Q., editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pages 1050–
1059, New York, New York, USA. PMLR.
Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern
Recognition (CVPR).
Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV).
Hausler, S., Garg, S., Xu, M., Milford, M., and Fischer, T.
(2021). Patch-netvlad: Multi-scale fusion of locally-
global descriptors for place recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 14141–
14152.
Kendall, A. and Cipolla, R. (2016). Modelling uncertainty
in deep learning for camera relocalization. In 2016
IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4762–4769.
Kendall, A. and Cipolla, R. (2017). Geometric loss func-
tions for camera pose regression with deep learning.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Kendall, A. and Gal, Y. (2017). What uncertainties do we
need in bayesian deep learning for computer vision?
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.
Kendall, A., Gal, Y., and Cipolla, R. (2018). Multi-task
learning using uncertainty to weigh losses for scene
geometry and semantics. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Kendall, A., Grimes, M., and Cipolla, R. (2015). Posenet: A
convolutional network for real-time 6-dof camera re-
localization. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).
Kingma, D. P., Salimans, T., and Welling, M. (2015). Vari-
ational dropout and the local reparameterization trick.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
and Garnett, R., editors, Advances in Neural Infor-
mation Processing Systems, volume 28. Curran Asso-
ciates, Inc.
Kuleshov, V., Fenner, N., and Ermon, S. (2018). Accurate
uncertainties for deep learning using calibrated regres-
sion. In Dy, J. and Krause, A., editors, Proceedings of
the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning
Research, pages 2796–2804. PMLR.
Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and scalable predictive uncertainty estimation
using deep ensembles. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R., editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Asso-
ciates, Inc.
Liao, Y., Xie, J., and Geiger, A. (2022). KITTI-360: A
novel dataset and benchmarks for urban scene under-
standing in 2d and 3d. Pattern Analysis and Machine
Intelligence (PAMI).
McAllister, R., Gal, Y., Kendall, A., Van Der Wilk, M.,
Shah, A., Cipolla, R., and Weller, A. (2017). Con-
crete problems for autonomous vehicle safety: Ad-
vantages of bayesian deep learning. In Proceedings
of the 26th International Joint Conference on Artifi-
cial Intelligence, IJCAI’17, page 4745–4753. AAAI
Press.
Meinert, N. and Lavin, A. (2021). Multivariate deep evi-
dential regression. CoRR, abs/2104.06135.
Neubert, P., Schubert, S., and Protzel, P. (2017). Sampling-
based methods for visual navigation in 3d maps by
synthesizing depth images. In 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems (IROS), pages 2492–2498.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alch
´
e-Buc, F., Fox, E., and Gar-
nett, R., editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.
Peretroukhin, V., Wagstaff, B., Giamou, M., and Kelly,
J. (2019). Probabilistic regression of rotations using
quaternion averaging and a deep multi-headed net-
work. CoRR, abs/1904.03182.
Petek, K., Sirohi, K., B
¨
uscher, D., and Burgard, W. (2022).
Robust monocular localization in sparse hd maps
leveraging multi-task uncertainty estimation. In 2022
International Conference on Robotics and Automation
(ICRA), pages 4163–4169.
Uncertainty-Aware DNN for Multi-Modal Camera Localization
89