REFERENCES
Flutter - build apps for any screen. https://flutter.dev/. (Ac-
cessed on 09/04/2024).
Afzaal, H., Farooque, A. A., Schumann, A. W., Hussain,
N., McKenzie-Gopsill, A., Esau, T., Abbas, F., and
Acharya, B. (2021). Detection of a potato disease
(early blight) using artificial intelligence. Remote
Sensing, 13(3).
Bahar, N. H., Lo, M., Sanjaya, M., Van Vianen, J., Alexan-
der, P., Ickowitz, A., and Sunderland, T. (2020). Meet-
ing the food security challenge for nine billion people
in 2050: What impact on forests? Global Environ-
mental Change, 62:102056.
Baker, N. and Capel, P. (2011). Environmental factors that
influence the location of crop agriculture in the con-
terminous united states. Technical report, US Depart-
ment of the Interior, US Geological Survey, Reston,
VA, USA.
Barman, U., Sahu, D., Barman, G., and Das, J. (2020).
Comparative assessment of deep learning to detect the
leaf diseases of potato based on data augmentation. In
2020 International Conference on Computational Per-
formance Evaluation (ComPE), pages 682–687.
Chattopadhay, A., Sarkar, A., Howlader, P., and Balasub-
ramanian, V. N. (2018). Grad-cam++: Generalized
gradient-based visual explanations for deep convolu-
tional networks. In 2018 IEEE winter conference on
applications of computer vision (WACV), pages 839–
847. IEEE.
Chen, J., Chen, J., Zhang, D., Sun, Y., and Nanehkaran,
Y. A. (2020). Using deep transfer learning for image-
based plant disease identification. Computers and
electronics in agriculture, 173:105393.
Geetharamani, G. and Pandian, A. (2019). Identification of
plant leaf diseases using a nine-layer deep convolu-
tional neural network. Computers & Electrical Engi-
neering, 76:323–338.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H.
(2017). Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv
preprint arXiv:1704.04861.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K.
(2017). Densely connected convolutional networks.
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 4700–4708.
Islam, M., Dinh, A., Wahid, K., and Bhowmik, P. (2017).
Detection of potato diseases using image segmenta-
tion and multiclass support vector machine. In 2017
IEEE 30th Canadian Conference on Electrical and
Computer Engineering (CCECE), pages 1–4.
Kamal, K., Yin, Z., Wu, M., and Wu, Z. (2019). Depthwise
separable convolution architectures for plant disease
classification. Computers and Electronics in Agricul-
ture, 165:104948.
Khalifa, N., Taha, M., Abou El-Maged, L., and Hassanien,
A. (2021). Artificial intelligence in potato leaf disease
classification: A deep learning approach. Machine
Learning and Big Data Analytics Paradigms: Anal-
ysis, Applications and Challenges, pages 63–79.
Kon
´
e, B. A. T., Bouaziz, B., Grati, R., and Boukadi, K.
(2023a). Boruta-attlstm: A novel deep learning archi-
tecture for soil moisture prediction. In International
Conference on Intelligent Systems and Pattern Recog-
nition, pages 234–246. Springer.
Kon
´
e, B. A. T., Grati, R., Bouaziz, B., and Boukadi,
K. (2023b). A new long short-term memory based
approach for soil moisture prediction. Journal
of Ambient Intelligence and Smart Environments,
(Preprint):1–14.
Liang, Q., Xiang, S., Hu, Y., Coppola, G., Zhang, D., and
Sun, W. (2019). Pd2se-net: Computer-assisted plant
disease diagnosis and severity estimation network.
Computers and Electronics in Agriculture, 157:518–
529.
Mahum, R., Munir, H., Mughal, Z.-U.-N., Awais, M.,
Sher Khan, F., Saqlain, M., Mahamad, S., and Tlili,
I. (2023). A novel framework for potato leaf dis-
ease detection using an efficient deep learning model.
Human and Ecological Risk Assessment: An Interna-
tional Journal, 29(2):303–326.
Rozaqi, A. and Sunyoto, A. (2020). Identification of disease
in potato leaves using convolutional neural network
(cnn) algorithm. In 2020 3rd International Confer-
ence on Information and Communications Technology
(ICOIACT), pages 72–76.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residu-
als and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4510–4520.
Sanjeev, K., Gupta, N., Jeberson, W., and Paswan, S.
(2020). Early prediction of potato leaf diseases us-
ing ann classifier. Orient. J. Comput. Sci. Technol.,
13:2–4.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 618–626.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. (2016). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2818–2826.
Tiwari, D., Ashish, M., Gangwar, N., Sharma, A., Patel,
S., and Bhardwaj, S. (2020). Potato leaf diseases
detection using deep learning. In 2020 4th Interna-
tional Conference on Intelligent Computing and Con-
trol Systems (ICICCS), pages 461–466.
Wirth, R. and Hipp, J. (2000). Crisp-dm: Towards a stan-
dard process model for data mining. In Proceedings of
the 4th international conference on the practical ap-
plications of knowledge discovery and data mining,
volume 1, pages 29–39. Manchester.
Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). Cbam:
Convolutional block attention module. In Proceed-
ings of the European conference on computer vision
(ECCV), pages 3–19.
Potato Leaf Disease Detection Approach Based on Transfer Learning with Spatial Attention
155