model transparency is critical. Our proposed method
strikes an effective balance between multiple conflict-
ing objectives, offering a robust solution for generat-
ing meaningful counterfactuals in time-series classifi-
cation.
Future work can explore several promising direc-
tions. First, further tuning of the hyper-parameters,
particularly the number of reference instances, could
lead to even greater improvements in performance.
Additionally, extending TX-Gen to handle multivari-
ate time-series data and real-time counterfactual gen-
eration could broaden its applicability to more com-
plex, real-world scenarios.
ACKNOWLEDGEMENT
This publication is part of the project XAIPre (with
project number 19455) of the research program Smart
Industry 2020 which is (partly) financed by the Dutch
Research Council (NWO).
REFERENCES
Back, T., Fogel, D. B., and Michalewicz, Z. (1997). Hand-
book of Evolutionary Computation. IOP Publishing
Ltd., GBR, 1st edition.
B
¨
ack, T. H., Kononova, A. V., van Stein, B., Wang, H.,
Antonov, K. A., Kalkreuth, R. T., de Nobel, J., Ver-
metten, D., de Winter, R., and Ye, F. (2023). Evolu-
tionary algorithms for parameter optimization—thirty
years later. Evolutionary Computation, 31(2):81–122.
Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh,
E. (2017). The great time series classification bake
off: A review and experimental evaluation of recent
algorithmic advances. Data Mining and Knowledge
Discovery, 31(3):606–660.
Cabello, N., Naghizade, E., Qi, J., and Kulik, L. (2020).
Fast and accurate time series classification through su-
pervised interval search. In 2020 IEEE International
Conference on Data Mining (ICDM), pages 948–953.
IEEE.
Chen, J.-F., Chen, W.-L., Huang, C.-P., Huang, S.-H., and
Chen, A.-P. (2016). Financial time-series data analysis
using deep convolutional neural networks. In 2016 7th
International conference on cloud computing and big
data (CCBD), pages 87–92. IEEE.
Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A.,
Mueen, A., and Batista, G. (2015). The ucr time se-
ries classification archive. www.cs.ucr.edu/
∼
eamonn/
time series data/.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197.
Delaney, E., Greene, D., and Keane, M. T. (2021). Instance-
Based Counterfactual Explanations for Time Series
Classification. In S
´
anchez-Ruiz, A. A. and Floyd,
M. W., editors, Case-Based Reasoning Research and
Development, pages 32–47, Cham. Springer Interna-
tional Publishing.
Endres, D. and Schindelin, J. (2003). A new metric for
probability distributions. IEEE Transactions on Infor-
mation Theory, 49(7):1858–1860.
Goldberg, D. E. and Deb, K. (1991). A Comparative Analy-
sis of Selection Schemes Used in Genetic Algorithms.
In Rawlins, G. J. E., editor, Foundations of Genetic
Algorithms, volume 1, pages 69–93. Elsevier.
H
¨
ollig, J., Kulbach, C., and Thoma, S. (2022). TSEvo: Evo-
lutionary Counterfactual Explanations for Time Se-
ries Classification. In 2022 21st IEEE International
Conference on Machine Learning and Applications
(ICMLA), pages 29–36.
Huang, Q., Chen, W., B
¨
ack, T., and van Stein, N. (2024).
Shapelet-based Model-agnostic Counterfactual Local
Explanations for Time Series Classification. Presented
at the AAAI 2024 Workshop on Explainable Machine
Learning for Sciences (XAI4Sci).
Karlsson, I., Rebane, J., Papapetrou, P., and Gionis, A.
(2018). Explainable time series tweaking via irre-
versible and reversible temporal transformations.
Karlsson, I., Rebane, J., Papapetrou, P., and Gionis, A.
(2020). Locally and globally explainable time se-
ries tweaking. Knowledge and Information Systems,
62(5):1671–1700.
Lang, J., Giese, M. A., Ilg, W., and Otte, S. (2023). Generat-
ing Sparse Counterfactual Explanations for Multivari-
ate Time Series. In Iliadis, L., Papaleonidas, A., An-
gelov, P., and Jayne, C., editors, Artificial Neural Net-
works and Machine Learning – ICANN 2023, pages
180–193, Cham. Springer Nature Switzerland.
Li, P., Bahri, O., Boubrahimi, S. F., and Hamdi, S. M.
(2022). SG-CF: Shapelet-Guided Counterfactual Ex-
planation for Time Series Classification. In 2022 IEEE
International Conference on Big Data (Big Data),
pages 1564–1569.
Li, P., Bahri, O., Boubrahimi, S. F., and Hamdi, S. M.
(2023). Attention-Based Counterfactual Explanation
for Multivariate Time Series. In Wrembel, R., Gam-
per, J., Kotsis, G., Tjoa, A. M., and Khalil, I., editors,
Big Data Analytics and Knowledge Discovery, pages
287–293, Cham. Springer Nature Switzerland.
Lubba, C. H., Sethi, S. S., Knaute, P., Schultz, S. R.,
Fulcher, B. D., and Jones, N. S. (2019). catch22:
CAnonical time-series CHaracteristics: Selected
through highly comparative time-series analysis. Data
Mining and Knowledge Discovery, 33(6):1821–1852.
Morid, M. A., Sheng, O. R. L., and Dunbar, J. (2023).
Time series prediction using deep learning methods
in healthcare. ACM Transactions on Management In-
formation Systems, 14(1):1–29.
Refoyo, M. and Luengo, D. (2024). Sub-SpaCE:
Subsequence-Based Sparse Counterfactual Explana-
tions for Time Series Classification Problems. In
Longo, L., Lapuschkin, S., and Seifert, C., editors,
TX-Gen: Multi-Objective Optimization for Sparse Counterfactual Explanations for Time-Series Classification
73