Dabiri, S., & Heaslip, K. (2019). Developing a Twitter-
based traffic event detection model using deep learning
architectures. Expert Systems with Applications, 118,
425–439. https://doi.org/10.1016/j.eswa.2018.10.017
Das, R. D., & Purves, R. S. (2020). Exploring the Potential
of Twitter to Understand Traffic Events and Their
Locations in Greater Mumbai, India. IEEE
Transactions on Intelligent Transportation Systems,
21(12), 5213–5222.
Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D.,
Chua, T.-S., & Li, Q. (2024). A Survey on RAG
Meeting LLMs: Towards Retrieval-Augmented Large
Language Models. http://arxiv.org/abs/2405.06211
Fontes, T., Murcos, F., Carneiro, E., Ribeiro, J., & Rossetti,
R. J. F. (2023). Leveraging Social Media as a Source of
Mobility Intelligence: An NLP-Based Approach. IEEE
Open Journal of Intelligent Transportation Systems, 4,
663–681. https://doi.org/10.1109/OJITS.2023.3308210
Hodorog, A., Petri, I., & Rezgui, Y. (2022). Machine
learning and Natural Language Processing of social
media data for event detection in smart cities.
Sustainable Cities and Society, 85.
https://doi.org/10.1016/j.scs.2022.104026
Houlsby, N., Giurgiu, A., Jastrze¸bski, S. J., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., &
Gelly, S. (n.d.). Parameter-Efficient Transfer Learning
for NLP. https://github.com/google-research/
Lu, H., Huang, D., Song, Y., Jiang, D., Zhou, T., & Qin, J.
(2020). St-trafficnet: A spatial-temporal deep learning
network for traffic forecasting. Electronics
(Switzerland), 9(9), 1–17.
https://doi.org/10.3390/electronics9091474
Ma, W., Wu, D., Sun, Y., Wang, T., Liu, S., Zhang, J., Xue,
Y., & Liu, Y. (2024). Combining Fine-tuning and
LLM-based Agents for Intuitive Smart Contract
Auditing with Justifications.
Mihindukulasooriya, N., Tiwari, S., Enguix, C. F., & Lata,
K. (2023). Text2KGBench: A Benchmark for
Ontology-Driven Knowledge Graph Generation from
Text. http://arxiv.org/abs/2308.02357
Nirbhaya, M. A. W., & Suadaa, L. H. (2023). Traffic
Incident Detection in Jakarta on Twitter Texts Using a
Multi-Label Classification Approach. Proceedings -
2023 10th International Conference on Computer,
Control, Informatics and Its Applications: Exploring
the Power of Data: Leveraging Information to Drive
Digital Innovation, IC3INA 2023, 290–295.
https://doi.org/10.1109/IC3INA60834.2023.10285731
Randell, David. A, Zhan Cui, & Anthony G. Cohn. (1992).
A spatial logic based on regions and connection. KR,
92.
Suat-Rojas, N., Gutierrez-Osorio, C., & Pedraza, C. (2022).
Extraction and Analysis of Social Networks Data to
Detect Traffic Accidents. Information (Switzerland),
13(1). https://doi.org/10.3390/info13010026
Sun, X., Liu, L., Ayorinde, A., & Panneerselvam, J. (2021).
ED-SWE: Event detection based on scoring and word
embedding in online social networks for the internet of
people. Digital Communications and Networks, 7(4),
559–569. https://doi.org/10.1016/j.dcan.2021.03.006
Tao, L., Xie, Z., Xu, D., Ma, K., Qiu, Q., Pan, S., & Huang,
B. (2022). Geographic Named Entity Recognition by
Employing Natural Language Processing and an
Improved BERT Model. ISPRS International Journal of
Geo-Information, 11(12).
https://doi.org/10.3390/ijgi11120598
Wang, M., Pang, A., Kan, Y., Pun, M.-O., Chen, C. S., &
Huang, B. (2024). LLM-Assisted Light: Leveraging
Large Language Model Capabilities for Human-
Mimetic Traffic Signal Control in Complex Urban
Environments. http://arxiv.org/abs/2403.08337
Wu, T., Khan, A., Yong, M., Qi, G., & Wang, M. (2022).
Efficiently embedding dynamic knowledge graphs.
Knowledge-Based Systems, 250.
https://doi.org/10.1016/j.knosys.2022.109124
Yang, X., Bekoulis, G., & Deligiannis, N. (2021). Traffic
Event Detection as a Slot Filling Problem.
http://arxiv.org/abs/2109.06035
Yang, X., Yan, J., Cheng, Y., & Zhang, Y. (2023). Learning
Deep Generative Clustering via Mutual Information
Maximization. IEEE Transactions on Neural Networks
and Learning Systems, 34(9), 6263–6275.
https://doi.org/10.1109/TNNLS.2021.3135375
Yin, F., Ye, X., & Durrett, G. (2024). LoFiT: Localized
Fine-tuning on LLM Representations.
http://arxiv.org/abs/2406.01563
Yuan, Z., Liu, H., Liu, J., Liu, Y., Yang, Y., Hu, R., &
Xiong, H. (2021). Incremental spatio-temporal graph
learning for online query-poi matching. The Web
Conference 2021 - Proceedings of the World Wide Web
Conference, WWW 2021, 1586–1597.
Zhang, H., Liu, Z., Xiong, C., & Liu, Z. (2019). Grounded
Conversation Generation as Guided Traverses in
Commonsense Knowledge Graphs.
Zhang, S., Zhu, K., & Zhang, W. (2023). Multivariate
Correlation Matrix-Based Deep Learning Model With
Enhanced Heuristic Optimization for Short-Term
Traffic Forecasting. IEEE Transactions on Knowledge
and Data Engineering, 35(3), 2847–2858.
Zheng, G., Chai, W. K., Duanmu, J. L., & Katos, V. (2023).
Hybrid deep learning models for traffic prediction in
large-scale road networks. Information Fusion, 92, 93–
114. https://doi.org/10.1016/j.inffus.2022.11.019
Zhou, S., Thomas Ng, S., Huang, G., Dao, J., & Li, D.
(2022). Extracting interrelated information from road-
related social media data. Advanced Engineering
Informatics, 54.
KEOD 2024 - 16th International Conference on Knowledge Engineering and Ontology Development
242