REFERENCES
Adkins, A., Chen, T., and Biswas, J. (2024). Obvi-slam:
Long-term object-visual slam. IEEE Robotics and Au-
tomation Letters.
Artono, B., Nugroho, W., and Wahyudi, R. (2024). Color-
based image processing for autonomous human fol-
lowing trolley robot navigation with camera vision. J.
of Computer Science and Engineering, 5(1):20–38.
Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf:
Speeded up robust features. In 9th European Conf. on
Computer Vision, Part I 9, pages 404–417. Springer.
Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Jour-
nal of Software Tools.
Corke, P., Paul, R., Churchill, W., and Newman, P. (2013).
Dealing with shadows: Capturing intrinsic scene ap-
pearance for image-based outdoor localisation. In
2013 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 2085–2092. IEEE.
Drupt, J., Comport, A. I., Dune, C., and Hugel, V. (2024).
Mam3slam: Towards underwater-robust multi-agent
visual slam. Ocean Engineering, 302:117643.
Duan, J., Fang, Y., Zhang, Q., and Qin, J. (2024). Hrc for
dual-robot intelligent assembly system based on mul-
timodal perception. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineer-
ing Manufacture, 238(4):562–576.
Goral, C. M., Torrance, K. E., Greenberg, D. P., and Bat-
taile, B. (1984). Modeling the interaction of light be-
tween diffuse surfaces. ACM SIGGRAPH computer
graphics, 18(3):213–222.
Irie, K., Yoshida, T., and Tomono, M. (2012). Outdoor
localization using stereo vision under various illumi-
nation conditions. Advanced Robotics, 26(3-4):327–
348.
Ji, Q., Zhang, Z., Chen, Y., and Zheng, E. (2024). Drv-slam:
An adaptive real-time semantic visual slam based on
instance segmentation toward dynamic environments.
IEEE Access, 12:43827–43837.
Koenig, N. and Howard, A. (2004). Design and use
paradigms for Gazebo, an open-source multi-robot
simulator. In Int. Conf. on intelligent robots and sys-
tems, volume 3, pages 2149–2154. Ieee.
Komatsu, H., Sawada, M., Iida, Y., Wada, I., Azuma, Y.,
Kudoh, A., Sato, S., Harada, T., and Taniguchi, F.
(2024). New surgery technique combining robotics
and laparoscopy using the hugo™ ras system. Asian
Journal of Endoscopic Surgery, 17(3):e13344.
Labb
´
e, M. and Michaud, F. (2022). Multi-session visual
slam for illumination-invariant re-localization in in-
door environments. Frontiers in Robotics and AI,
9:801886.
Lafortune, E. (1996). Mathematical models and monte carlo
algorithms for physically based rendering. Depart-
ment of Computer Science, Faculty of Engineering,
Katholieke Universiteit Leuven, 20(74-79):4.
Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011).
Brisk: Binary robust invariant scalable keypoints. In
Int. Conf. on computer vision, pages 2548–2555.
Lowe, G. (2004). Sift-the scale invariant feature transform.
Int. J, 2(91-110):2.
Milford, M. J. and Wyeth, G. F. (2012). Seqslam: Visual
route-based navigation for sunny summer days and
stormy winter nights. In IEEE Int. Conf. on robotics
and automation, pages 1643–1649.
Mingachev, E., Lavrenov, R., Magid, E., and Svinin, M.
(2020). Comparative analysis of monocular slam al-
gorithms using tum and euroc benchmarks. In 15th
International Conference on Electromechanics and
Robotics” Zavalishin’s Readings”, pages 343–355.
Springer.
Nicolas-3D (2024). Drift race track (sketchfab. http
s :// s k e tchf a b.com / 3 d - mode l s /dri f t- r a ce- tra
ck-free-b4108132c93f4736957d97e274fbd11e. Ac-
cessed: 14-08-2024.
Nishita, T. and Nakamae, E. (1984). Half-tone represen-
tation of 3-d objects with smooth edges by using a
multi-scanning method. J. Information Processing (in
Japanese), 25(5):703–711.
Oishi, S., Inoue, Y., Miura, J., and Tanaka, S. (2019). Seqs-
lam++: View-based robot localization and navigation.
Robotics and Autonomous Systems, 112:13–21.
Parker, S. G. et al. (2010). Optix: a general purpose ray
tracing engine. Acm transactions on graphics (tog),
29(4):1–13.
Piasco, N., Sidib
´
e, D., Gouet-Brunet, V., and Demonceaux,
C. (2021). Improving image description with aux-
iliary modality for visual localization in challenging
conditions. International Journal of Computer Vision,
129(1):185–202.
Reda, I. and Andreas, A. (2004). Solar position algo-
rithm for solar radiation applications. Solar energy,
76(5):577–589.
Rojtberg, Pavel and Rogers, David and Streeting, Steve and
others (2001 – 2024). Ogre scene-oriented, flexible 3d
engine. https://www.ogre3d.org/.
Roth, S. D. (1982). Ray casting for modeling solids. Com-
puter graphics and image processing, 18(2):109–144.
Safin, R., Lavrenov, R., and Mart
´
ınez-Garc
´
ıa, E. A. (2020).
Evaluation of visual slam methods in usar applica-
tions using ros/gazebo simulation. In Proceedings
of 15th International Conference on Electromechan-
ics and Robotics” Zavalishin’s Readings” ER (ZR)
2020, Ufa, Russia, 15–18 April 2020, pages 371–382.
Springer.
Sarlin, P.-E. et al. (2021). Back to the feature: Learn-
ing robust camera localization from pixels to pose.
In IEEE/CVF Conf. on computer vision and pattern
recognition, pages 3247–3257.
Shirley, P. and Morley, R. K. (2008). Realistic ray tracing.
AK Peters, Ltd.
Yue, X., Zhang, Y., Chen, J., Chen, J., Zhou, X., and He, M.
(2024). Lidar-based SLAM for robotic mapping: state
of the art and new frontiers. Industrial Robot: Int. J.
of robotics research and application, 51(2):196–205.
Zhang, B., Dong, Y., Zhao, Y., and Qi, X. (2024). Dynpl-
slam: A robust stereo visual slam system for dynamic
scenes using points and lines. IEEE Transactions on
Intelligent Vehicles.
ICINCO 2024 - 21st International Conference on Informatics in Control, Automation and Robotics
526