REFERENCES
Alabdulmohsin, I., Han, Y., Shen, Y., and Zhang, X. (2016).
Content-agnostic malware detection in heterogeneous
malicious distribution graph. In Proceedings of the
25th ACM International on Conference on Informa-
tion and Knowledge Management, pages 2395–2400.
Coste, C. I. (2024). Malicious web links detection based on
image processing and deep learning models (accepted
for publication). In The 23rd IEEE/WIC International
Conference on Web Intelligence and Intelligent Agent
Technology.
Joerg, S. (2017). Using-machine-learning-to-detect-
malicious-urls. faizan dataset link (Retrieved: August
22, 2024).
Koide, T., Fukushi, N., Nakano, H., and Chiba, D. (2023).
Detecting phishing sites using chatgpt. arXiv preprint
arXiv:2306.05816.
Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y.
(2022). Large language models are zero-shot reason-
ers. Advances in neural information processing sys-
tems, 35:22199–22213.
Kumi, S., Lim, C., and Lee, S.-G. (2021). Malicious url
detection based on associative classification. Entropy,
23(2):182.
Lin, J. (1991). Divergence measures based on the shannon
entropy. IEEE Transactions on Information theory,
37(1):145–151.
Ma, J., Saul, L. K., Savage, S., and Voelker, G. M. (2009).
Beyond blacklists: learning to detect malicious web
sites from suspicious urls. In Proceedings of the 15th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1245–1254.
Mahdavifar, S., Maleki, N., Lashkari, A. H., Broda, M.,
and Razavi, A. H. (2021). Classifying malicious do-
mains using dns traffic analysis. In 2021 IEEE Intl
Conf on Dependable, Autonomic and Secure Com-
puting, Intl Conf on Pervasive Intelligence and Com-
puting, Intl Conf on Cloud and Big Data Computing,
Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 60–
67. IEEE.
malwaredomainlist (2010). Malware domain list. URL to
malwaredomainlist (Retrieved: August 22, 2024).
Mamun, M. S. I., Rathore, M. A., Lashkari, A. H.,
Stakhanova, N., and Ghorbani, A. A. (2016). Detect-
ing malicious urls using lexical analysis. In Network
and System Security: 10th International Conference,
NSS 2016, Taipei, Taiwan, September 28-30, 2016,
Proceedings 10, pages 467–482. Springer.
Marchal, S., Franc¸ois, J., State, R., and Engel, T. (2014).
Phishstorm: Detecting phishing with streaming ana-
lytics. IEEE Transactions on Network and Service
Management, 11(4):458–471.
Nagy, N., Aljabri, M., Shaahid, A., Ahmed, A. A., Alnasser,
F., Almakramy, L., Alhadab, M., and Alfaddagh, S.
(2023). Phishing urls detection using sequential and
parallel ml techniques: Comparative analysis. Sen-
sors, 23(7):3467.
OpenAI (2024a). Openai platform. URL to malwaredo-
mainlist (Retrieved: August 22, 2024).
OpenAI (2024b). Usage policies. Link to article (Retrieved:
August 22, 2024).
Oshingbesan, A., Okobi, C., Ekoh, C., Richard, K., and
Munezero, A. (2021). Detection of malicious web-
sites using machine learning techniques. preprint,
none(none):1–5.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
PhishTank (2023). PhishTank - Out of the Net, into the
Tank - Developer Information. PhishTank website
(Retrieved: August 22, 2024).
Quintero, B. (2023). Introducing virustotal code insight:
Empowering threat analysis with generative ai. Link
to article (Retrieved: August 22, 2024).
Roy, S. S., Naragam, K. V., and Nilizadeh, S. (2023). Gen-
erating phishing attacks using chatgpt. arXiv preprint
arXiv:2305.05133.
Rozi, M., Ban, T., Kim, S., Ozawa, S., Takahashi, T., and
Inoue, D. (2021). Detecting malicious websites based
on javascript content analysis. In Computer Security
Symposium 2021, Dubrovnik, Croatia. Computer Se-
curity Symposium 2021.
Shetty, U., Patil, A., and Mohana, M. (2023). Malicious
url detection and classification analysis using machine
learning models. In 2023 International Conference
on Intelligent Data Communication Technologies and
Internet of Things (IDCIoT), pages 470–476. IEEE.
Siddhartha, M. (2021). Malicious urls dataset. Kaggle - Ma-
licious URLs dataset (Retrieved: August 22, 2024).
Statista Research Department (2024). Household internet
access in the european union 2023. Link to article
(Retrieved: August 22, 2024).
Tushkanov, V. (2023). Investigating chatgpt phishing detec-
tion capabilities. Link to article (Retrieved: August
22, 2024).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. arXiv preprint
arXiv:1706.03762.
Vikramaditya, N. (2024). Googlesearch-python. Link to
library (Retrieved: August 22, 2024).
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. (2022). Chain-of-
thought prompting elicits reasoning in large language
models. Advances in neural information processing
systems, 35:24824–24837.
Wejinya, G. and Bhatia, S. (2021). Machine learning for
malicious url detection. In ICT Systems and Sustain-
ability, pages 463–472. Springer, Singapore.
Zhang, L. and Yan, Q. (2023). Detect malicious websites by
building a neural network to capture global and local
features of websites. Research Square.
WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies
432