REFERENCES
Aggarwal, P., Horsmann, T., Wojatzki, M., and Zesch, T.
(2019). Ltl-ude at semeval-2019 task 6: Bert and two-
vote classification for categorizing offensiveness. In
Proceedings of the 13th International Workshop on
Semantic Evaluation, pages 678–682.
AI, J. (2018). Toxic Comment Classification Challenge.
Al-Hassan, A. and Al-Dossari, H. (2019). Detection of hate
speech in social networks: a survey on multilingual
corpus. In 6th International Conference on Computer
Science and Information Technology.
Aslan, A. (2017). Online hate discourse: A study on hatred
speech directed against syrian refugees on youtube.
Journal of Media Critiques, 3(12):227–256.
Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V.,
Pardo, F. M. R., Rosso, P., and Sanguinetti, M. (2019).
Semeval-2019 task 5: Multilingual detection of hate
speech against immigrants and women in twitter. In
Proceedings of the 13th International Workshop on
Semantic Evaluation, pages 54–63.
Bassignana, E., Basile, V., and Patti, V. (2018). Hurtlex:
A multilingual lexicon of words to hurt. In 5th Ital-
ian Conference on Computational Linguistics, CLiC-
it 2018, volume 2253, pages 1–6. CEUR-WS.
Bayer, J. and Petra, B. (2020). Hate speech and hate crime
in the eu and the evaluation of online content regula-
tion approaches. EPRS: European Parliamentary Re-
search Service.
Ben-David, A. and Matamoros-Fern
´
andez, A. (2016). Hate
speech and covert discrimination on social media:
Monitoring the facebook pages of extreme-right po-
litical parties in spain. International Journal of Com-
munication, 10:1167–1193.
Charalampakis, B., Spathis, D., Kouslis, E., and Ker-
manidis, K. (2016). A comparison between semi-
supervised and supervised text mining techniques on
detecting irony in greek political tweets. Engineering
Applications of Artificial Intelligence, 51:50–57.
Davidson, T., Warmsley, D., Macy, M., and Weber, I.
(2017). Automated hate speech detection and the
problem of offensive language. In Eleventh interna-
tional aaai conference on web and social media.
Del Vigna, F., Cimino, A., Dell’Orletta, F., Petrocchi,
M., and Tesconi, M. (2017). Hate me, hate me
not: Hate speech detection on facebook. Proceed-
ings of the First Italian Conference on Cybersecurity
(ITASEC17), Venice, Italy.
Di F
´
atima, B., Munoriyarwa, A., Gilliland, A., Msughter,
A. E., Vizca
´
ıno-Verd
´
u, A., G
¨
okaliler, E., Capoano,
E., Yu, H., Alikılıc¸,
˙
I., Gonz
´
alez-Aguilar, J.-M., et al.
(2023). Hate Speech on Social Media: A Global Ap-
proach. Pontificia Universidad Cat
´
olica del Ecuador.
DistilBERT base model (uncased) (2024).
https://huggingface.co/distilbert/distilbert-base-
uncased.
D
¨
oring, N. and Mohseni, M. R. (2019). Fail videos and
related video comments on youtube: a case of sexu-
alization of women and gendered hate speech? Com-
munication research reports, 36(3):254–264.
D
¨
oring, N. and Mohseni, M. R. (2020). Gendered hate
speech in youtube and younow comments: Results of
two content analyses. SCM Studies in Communication
and Media, 9(1):62–88.
Europe, I. (2014). Hate crime & hate speech retrieved from.
European Commission (1999). Speech by Commissioner
Jourov
´
a - 10 years of the EU Fundamental Rights
Agency: a call to action in defence of fundamental
rights, democracy and the rule of law retrieved from.
Facebook (2024). How do i report inap-
propriate or abusive things on facebook.
https://www.facebook.com/help/212722115425932.
Fortuna, P. and Nunes, S. (2018). A survey on automatic
detection of hate speech in text. ACM Computing Sur-
veys (CSUR), 51(4):85.
Gaffney, D. (2018). The pushshift Gab dataset.
Jahan, M. S. and Oussalah, M. (2023). A systematic re-
view of hate speech automatic detection using natural
language processing. Neurocomputing, page 126232.
Joulin, A., Grave, E., Bojanowski, P., Douze, M., J
´
egou,
H., and Mikolov, T. (2016). Fasttext.zip: Com-
pressing text classification models. arXiv preprint
arXiv:1612.03651.
Kazemi, A., Garimella, K., Shahi, G. K., Gaffney, D., and
Hale, S. A. (2022). Research note: Tiplines to uncover
misinformation on encrypted platforms: A case study
of the 2019 indian general election on whatsapp. Har-
vard Kennedy School Misinformation Review.
Li, L., Fan, L., Atreja, S., and Hemphill, L. (2023). ”hot”
ChatGPT: The promise of chatgpt in detecting and dis-
criminating hateful, offensive, and toxic comments on
social media. arXiv preprint arXiv:2304.10619.
Liu, P., Li, W., and Zou, L. (2019). Nuli at semeval-2019
task 6: transfer learning for offensive language detec-
tion using bidirectional transformers. In Proceedings
of the 13th International Workshop on Semantic Eval-
uation, pages 87–91.
Loper, E. and Bird, S. (2002). Nltk: the natural language
toolkit. arXiv preprint cs/0205028.
Malmasi, S. and Zampieri, M. (2017). Detecting hate
speech in social media. In Proceedings of the Inter-
national Conference Recent Advances in Natural Lan-
guage Processing, RANLP 2017, pages 467–472.
Mandl, T., Modha, S., Majumder, P., Patel, D., Dave, M.,
Mandlia, C., and Patel, A. (2019). Overview of the
hasoc track at fire 2019: Hate speech and offensive
content identification in indo-european languages. In
Proceedings of the 11th Forum for Information Re-
trieval Evaluation, pages 14–17.
McHugh, M. L. (2012). Interrater reliability: the kappa
statistic. Biochemia medica, 22(3):276–282.
Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and
Chang, Y. (2016). Abusive language detection in on-
line user content. In Proceedings of the 25th interna-
tional conference on world wide web, pages 145–153.
Nockleby, J. T. (2000). Hate speech. Encyclopedia of the
American constitution, 3:1277–1279.
Ousidhoum, N., Lin, Z., Zhang, H., Song, Y., and Ye-
ung, D.-Y. (2019). Multilingual and multi-aspect hate
Hate Speech Detection Using Cross-Platform Social Media Data in English and German Language
139