Lanjewar, M. G., Parate, R. K., & Parab, J. S. (2022).
Machine Learning Approach with Data Normalization
Technique for Early Stage Detection of
Hypothyroidism. In M. K. Ahirwal, N. D. Londhe, &
A. Kumar, Artificial Intelligence Applications for
Health Care (1st ed., pp. 91–108). CRC Press.
https://doi.org/10.1201/9781003241409-5
Li, J., Li, G., Liu, M., Zhu, X., & Wei, L. (2022). A novel
text-based framework for forecasting agricultural
futures using massive online news headlines.
International Journal of Forecasting, 38(1), 35–50.
https://doi.org/10.1016/j.ijforecast.2020.02.002
Luo, J., Zhao, C., Chen, Q., & Li, G. (2022). Using deep
belief network to construct the agricultural information
system based on Internet of Things. The Journal of
Supercomputing, 78(1), 379–405.
https://doi.org/10.1007/s11227-021-03898-y
Mahto, A. K., Alam, M. A., Biswas, R., Ahmed, J., & Alam,
S. I. (2021). Short-Term Forecasting of Agriculture
Commodities in Context of Indian Market for
Sustainable Agriculture by Using the Artificial Neural
Network. Journal of Food Quality, 2021, 1–13.
https://doi.org/10.1155/2021/9939906
Mamoudan, M. M., Mohammadnazari, Z., Ostadi, A., &
Esfahbodi, A. (2024). Food products pricing theory
with application of machine learning and game theory
approach. International Journal of Production
Research, 62(15), 5489–5509. https://doi.org/10.1080/
00207543.2022.2128921
Menculini, L., Marini, A., Proietti, M., Garinei, A., Bozza,
A., Moretti, C., & Marconi, M. (2021). Comparing
Prophet and Deep Learning to ARIMA in Forecasting
Wholesale Food Prices. Forecasting, 3(3), 644–662.
https://doi.org/10.3390/forecast3030040
Mohanty, M. K., Thakurta, P. K. G., & Kar, S. (2023).
Agricultural commodity price prediction model: A
machine learning framework. Neural Computing and
Applications, 35(20), 15109–15128.
https://doi.org/10.1007/s00521-023-08528-7
Oktoviany, P., Knobloch, R., & Korn, R. (2021). A machine
learning-based price state prediction model for
agricultural commodities using external factors.
Decisions in Economics and Finance, 44(2), 1063–
1085. https://doi.org/10.1007/s10203-021-00354-7
Pallathadka, H., Mustafa, M., Sanchez, D. T., Sekhar Sajja,
G., Gour, S., & Naved, M. (2023). Impact of Machine
Learning on Management, Healthcare and Agriculture.
Materials Today: Proceedings, 80, 2803–2806.
https://doi.org/10.1016/j.matpr.2021.07.042
Paul, R. K., & Garai, S. (2021). Performance comparison of
wavelets-based machine learning technique for
forecasting agricultural commodity prices. Soft
Computing, 25(20), 12857–12873.
https://doi.org/10.1007/s00500-021-06087-4
Paul, R. K., Yeasin, Md., Kumar, P., Kumar, P.,
Balasubramanian, M., Roy, H. S., Paul, A. K., & Gupta,
A. (2022). Machine learning techniques for forecasting
agricultural prices: A case of brinjal in Odisha, India.
PLOS ONE, 17(7), e0270553. https://doi.org/10.1371/
journal.pone.0270553
Purohit, S. K., Panigrahi, S., Sethy, P. K., & Behera, S. K.
(2021). Time Series Forecasting of Price of
Agricultural Products Using Hybrid Methods. Applied
Artificial Intelligence, 35(15), 1388–1406.
https://doi.org/10.1080/08839514.2021.1981659
Rashid, M., Bari, B. S., Yusup, Y., Kamaruddin, M. A., &
Khan, N. (2021). A Comprehensive Review of Crop
Yield Prediction Using Machine Learning Approaches
With Special Emphasis on Palm Oil Yield Prediction.
IEEE Access, 9, 63406–63439. https://doi.org/10.1109/
ACCESS.2021.3075159
Ribeiro, M. H. D. M., & Dos Santos Coelho, L. (2020).
Ensemble approach based on bagging, boosting and
stacking for short-term prediction in agribusiness time
series. Applied Soft Computing, 86, 105837.
https://doi.org/10.1016/j.asoc.2019.105837
Sabu, K. M., & Kumar, T. K. M. (2020). Predictive
analytics in Agriculture: Forecasting prices of
Arecanuts in Kerala. Procedia Computer Science, 171,
699–708. https://doi.org/10.1016/j.procs.2020.04.076
Shakoor, Md. T., Rahman, K., Rayta, S. N., & Chakrabarty,
A. (2017). Agricultural production output prediction
using Supervised Machine Learning techniques. 2017
1st International Conference on Next Generation
Computing Applications (NextComp), 182–187.
https://doi.org/10.1109/NEXTCOMP.2017.8016196
Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2021).
Machine Learning Applications for Precision
Agriculture: A Comprehensive Review. IEEE Access,
9, 4843–4873. DOI: 10.1109/ACCESS.2020.3048415
Singh, N., & Sindhu, R. (2024). Crop Price Prediction
Using Machine Learning. Journal of Electrical
Systems, 20(7s), 2258–2269. DOI: 10.52783/jes.3961
Su, Y., & Wang, X. (2021). Innovation of agricultural
economic management in the process of constructing
smart agriculture by big data. Sustainable Computing:
Informatics and Systems, 31, 100579.
https://doi.org/10.1016/j.suscom.2021.100579
Vinutha, H. P., Poornima, B., & Sagar, B. M. (2018).
Detection of Outliers Using Interquartile Range
Technique from Intrusion Dataset. In S. C. Satapathy,
J. M. R. S. Tavares, V. Bhateja, & J. R. Mohanty (Eds.),
Information and Decision Sciences (Vol. 701, pp. 511–
518). Springer Singapore. https://doi.org/10.1007/978-
981-10-7563-6_53
Wang, J., Wang, Z., Li, X., & Zhou, H. (2022). Artificial
bee colony-based combination approach to forecasting
agricultural commodity prices. International Journal of
Forecasting, 38(1), 21–34. https://doi.org/10.1016/
j.ijforecast.2019.08.006
Wang, L., Feng, J., Sui, X., Chu, X., & Mu, W. (2020).
Agricultural product price forecasting methods:
Research advances and trend. British Food Journal,
122(7), 2121–2138. DOI: 10.1108/BFJ-09-2019-0683
Xu, X. (2020). Corn Cash Price Forecasting. American
Journal of Agricultural Economics, 102(4), 1297–
1320. https://doi.org/10.1002/ajae.12041
Xu, X., & Zhang, Y. (2021). Corn cash price forecasting
with neural networks. Computers and Electronics in
KMIS 2024 - 16th International Conference on Knowledge Management and Information Systems
378