Kohonen, T. (1982). Self-organizing formation of topolog-
ically correct feature maps. Biological Cybernetics,
43(1):59–69. doi:10.1007/BF00337288.
Kohonen, T. (1989). Self-Organization and As-
sociative Memory. Springer, 3rd edition.
doi:10.1007/978-3-642-88163-3.
Kohonen, T. (2001). Self-Organizing Maps. Springer-
Verlag, 3rd edition. doi:10.1007/978-3-642-56927-2.
Kohonen, T., Hynninen, J., Kangas, J., and Laaksonen, J.
(1996). SOM
PAK: The Self-Organizing Map pro-
gram package. Technical Report A31, Helsinki Uni-
versity of Technology.
Lagus, K. and Kaski, S. (1999). Keyword selection
method for characterizing text document maps. In
Proceedings of ICANN, volume 1, pages 371–376.
doi:10.1049/cp:19991137.
Li, Z. and Eastman, J. R. (2006). The nature and clas-
sification of unlabelled neurons in t he use of Ko-
honen’s Self-Organizing Map for supervised clas-
sification. Transactions in GIS, 10(4):599–613.
doi:10.1111/j.1467-9671.2006.01014.x.
Miller, Jr, R. G. (1981). Simultaneous Statisti-
cal Inference. Springer-Verlag, 2nd edition.
doi:10.1007/978-1-4613-8122-8.
Oja, M., Kaski, S., and Kohonen, T. (2003). Bibliography
of Self-Organizing Map (SOM) papers: 1998–2001
addendum. Neural Computing Surveys, 3:1–156.
P¨oll¨a, M., Honkela, T., and Kohonen, T. (2009). Bibliog-
raphy of Self-Organizing Map (SOM) papers: 2002-
2005 addendum. Technical Report T KK -ICS-R23,
Helsinki University of Technology.
Rauber, A. and Merkl, D. (1999). The SOMLib digital li-
brary system. In Proceedings of ECDL, pages 323–
342. doi:10.1007/3-540-48155-9
21.
Rosa, A. H., Stubbings, W. A., Akinrinade, O. E., Gon-
tijo, E. S. J., and Harrad, S. (2024). Neural net-
work for evaluation of the impact of the UK COVID-
19 national lockdown on atmospheric concentrations
of PAHs and PBDEs. Environmental Pollution,
341:122794. doi:10.1016/j.envpol.2023.122794.
Samarasinghe, S. (2007). Neural Networks for Applied
Sciences and Engineering: From Fundamentals to
Complex Pattern Recognition. Auerbach Publica-
tions, B oca Raton, Florida, United States of America.
doi:10.1201/9780849333750.
Serrano-Cinca, C. (1996). Self organizing neural networks
for financial diagnosis. Decision Support Systems,
17(3):227–238. doi:10.1016/0167-9236(95)00033-X.
Sigillito, V., Wing, S., H utt on, L ., and Baker, K. (1989).
Ionosphere data set. UCI Machine Learning Reposi-
tory. doi:10.24432/C5W01B.
Sobol’, I. M. (1967). On the distribution of points
in a cube and the approximate evaluation of
integrals. USSR Computational Mathemat-
ics and Mathematical Physics, 7(4):86–112.
doi:10.1016/0041-5553(67)90144-9.
Su, M.-C., Liu, T.-K., and Chang, H.-T. (1999). An efficient
initialization scheme for the self-organizing feature
map algorithm. In Proceedings of IJCNN, volume 3,
pages 1906–1910. doi:10.1109/IJCNN.1999.832672.
van H eerden, W. S. (2017). Self-organizing feature maps for
exploratory data analysis and data mining: A practical
perspective. Master’s thesis, University of Pretoria.
van Heerden, W. S. (2023). Automatic distance-based inter-
polating unit detection and pruning in self-organizing
maps. In Proceedings of SSCI, pages 1298–1303.
doi:10.1109/SSC I52147.2023.10372025.
van Heerden, W. S. (2024). SOMLib.
https://github.com/wvheerden/SOMLib.
van Heerden, W. S. and Engelbrecht, A. P. (2008). A
comparison of map neuron labeling approaches
for unsupervised self-organizing feature maps.
In Proceedings of IJCNN, pages 2139–2146.
doi:10.1109/IJCNN.2008.4634092.
van Heerden, W. S. and Engelbrecht, A. P. (2012). Unsuper-
vised weight-based cluster labeling for self-organizing
maps. In Proceedings of WSOM, pages 45–54.
doi:10.1007/978-3-642-35230-0
5.
van Heerden, W. S. and Engelbrecht, A. P. (2016). An
investigation into the effect of unlabeled neurons
on Self-Organizing Maps. In Proceedings of SSCI.
doi:10.1109/SSC I.2016.7849938.
Vantyghem, A. N., Galvin, T. J., Sebastian, B., O’Dea,
C., Gordon, Y. A., Boyce, M., Rudnick, L., Pol-
sterer, K., Andernach, H., Dionyssiou, M., Venkatara-
man, P., Norris, R., Baum, S., Wang, X. R., and
Huynh, M. (2024). Rotation and flipping invari-
ant self-organizing maps wi th astronomical images:
A cookbook and application to the VLA Sky Sur-
vey QuickLook images. Astronomy and Computing,
47:100824. doi:10.1016/j.ascom.2024.100824.
Wilcoxon, F. (1945). Individual comparisons by rank-
ing methods. Biometrics Bulletin, 1(6):80–83.
doi:10.2307/3001968.
Wnek, J. (1993). Monk’s problems data sets. UCI Machine
Learning Repository. doi:10.24432/C5R30R.