Ongoing work focuses on evaluating SVR tech-
niques incorporating feature selection methods and
developing a statistical framework for dynamically
selecting SVR variants as ensemble members. Fur-
ther exploration of alternative combination rules, par-
ticularly non-linear ones, is essential to validate and
extend the study’s findings.
REFERENCES
Braga, P. L., Oliveira, A. L., and Meira, S. R. (2007). Soft-
ware effort estimation using machine learning tech-
niques with robust confidence intervals. In 7th inter-
national conference on hybrid intelligent systems (HIS
2007), pages 352–357. IEEE.
Braga, P. L., Oliveira, A. L., and Meira, S. R. (2008). A
ga-based feature selection and parameters optimiza-
tion for support vector regression applied to software
effort estimation. In Proceedings of the 2008 ACM
symposium on Applied computing, pages 1788–1792.
Cabral, J. T. H. d. A., Oliveira, A. L., and da Silva, F. Q.
(2023). Ensemble effort estimation: An updated and
extended systematic literature review. Journal of Sys-
tems and Software, 195:111542.
Charette, R. N. (2005). Why software fails. IEEE spectrum,
42(9):36.
de Barcelos Tronto, I. F., da Silva, J. D. S., and Sant’Anna,
N. (2008). An investigation of artificial neural net-
works based prediction systems in software project
management. Journal of Systems and Software,
81(3):356–367.
Foss, T., Stensrud, E., Kitchenham, B., and Myrtveit, I.
(2003). A simulation study of the model evaluation
criterion mmre. IEEE Transactions on software engi-
neering, 29(11):985–995.
Hosni, M. (2023). On the value of combiners in hetero-
geneous ensemble effort estimation. In KDIR, pages
153–163.
Hosni, M., Idri, A., and Abran, A. (2018a). Improved ef-
fort estimation of heterogeneous ensembles using fil-
ter feature selection. In ICSOFT, pages 439–446.
Hosni, M., Idri, A., and Abran, A. (2019). Evaluating fil-
ter fuzzy analogy homogenous ensembles for software
development effort estimation. Journal of Software:
Evolution and Process, 31(2):e2117.
Hosni, M., Idri, A., and Abran, A. (2021). On the value of
filter feature selection techniques in homogeneous en-
sembles effort estimation. Journal of Software: Evo-
lution and Process, 33(6):e2343.
Hosni, M., Idri, A., Abran, A., and Nassif, A. B. (2018b).
On the value of parameter tuning in heterogeneous en-
sembles effort estimation. Soft Computing, 22:5977–
6010.
Idri, A., Hosni, M., and Abran, A. (2016). Systematic liter-
ature review of ensemble effort estimation. Journal of
Systems and Software, 118:151–175.
Kocaguneli, E., Menzies, T., and Keung, J. W. (2011). On
the value of ensemble effort estimation. IEEE Trans-
actions on Software Engineering, 38(6):1403–1416.
Kumar, K. H. and Srinivas, K. (2024). An improved
analogy-rule based software effort estimation using
htrr-rnn in software project management. Expert Sys-
tems with Applications, 251:124107.
Kumar, P. S., Behera, H. S., Kumari, A., Nayak, J., and
Naik, B. (2020). Advancement from neural networks
to deep learning in software effort estimation: Per-
spective of two decades. Computer Science Review,
38:100288.
L
´
opez-Mart
´
ın, C. (2021). Effort prediction for the software
project construction phase. Journal of Software: Evo-
lution and Process, 33(7):e2365.
Mahmood, Y., Kama, N., Azmi, A., Khan, A. S., and Ali,
M. (2022). Software effort estimation accuracy pre-
diction of machine learning techniques: A systematic
performance evaluation. Software: Practice and ex-
perience, 52(1):39–65.
Miyazaki, Y., Takanou, A., Nozaki, H., Nakagawa, N., and
Okada, K. (1991). Method to estimate parameter val-
ues in software prediction models. Information and
Software Technology, 33(3):239–243.
Mustafa, E. I. and Osman, R. (2024). A random forest
model for early-stage software effort estimation for
the seera dataset. Information and Software Technol-
ogy, 169:107413.
Oliveira, A. L. (2006). Estimation of software project ef-
fort with support vector regression. Neurocomputing,
69(13-15):1749–1753.
Oliveira, A. L., Braga, P. L., Lima, R. M., and Corn
´
elio,
M. L. (2010). Ga-based method for feature selection
and parameters optimization for machine learning re-
gression applied to software effort estimation. infor-
mation and Software Technology, 52(11):1155–1166.
Shepperd, M. and MacDonell, S. (2012). Evaluating pre-
diction systems in software project estimation. Infor-
mation and Software Technology, 54(8):820–827.
Vapnik, V. N., Vapnik, V., et al. (1998). Statistical learning
theory. wiley New York.
Wen, J., Li, S., Lin, Z., Hu, Y., and Huang, C. (2012). Sys-
tematic literature review of machine learning based
software development effort estimation models. In-
formation and Software Technology, 54(1):41–59.
KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval
516