REFERENCES
Ajorloo, S., Jamarani, A., Kashfi, M., Kashani, M. H., and
Najafizadeh, A. (2024). A systematic review of ma-
chine learning methods in software testing. Applied
Soft Computing, page 111805.
Ali, A. and Gravino, C. (2019). A systematic literature
review of software effort prediction using machine
learning methods. J. Softw. Evol. Process, 31(10):1–
25.
Altman, N. S. (1992). An introduction to kernel and
nearest-neighbor nonparametric regression. Am. Stat.,
46(3):175–185.
Azzeh, M. and Nassif, A. B. (2013). Fuzzy model tree for
early effort estimation. In 2013 12th International
Conference on Machine Learning and Applications,
pages 117–121.
Azzeh, M., Nassif, A. B., and Minku, L. L. (2015). An
empirical evaluation of ensemble adjustment methods
for analogy-based effort estimation. J. Syst. Softw.,
103:36–52.
Charette, R. N. (2005). Why software fails? IEEE Spectr.,
42(9):42–49.
d. A. Cabral, J. T. H., Oliveira, A. L. I., and da Silva, F. Q. B.
(2023). Ensemble effort estimation: An updated and
extended systematic literature review. J. Syst. Softw.,
195:111542.
Elish, M. O., Helmy, T., and Hussain, M. I. (2013). Em-
pirical study of homogeneous and heterogeneous en-
semble models for software development effort esti-
mation. Math. Probl. Eng., 2013.
Foss, T., Stensrud, E., Kitchenham, B., and Myrtveit, I.
(2003). A simulation study of the model evaluation
criterion mmre. IEEE Trans. Softw. Eng., 29(11):985–
995.
Hosni, M. (2023). Encoding techniques for handling cat-
egorical data in machine learning-based software de-
velopment effort estimation. In KDIR, pages 460–467.
Hosni, M. and Idri, A. (2018). Software development effort
estimation using feature selection techniques. In Fron-
tiers in Artificial Intelligence and Applications, pages
439–452.
Hosni, M., Idri, A., and Abran, A. (2019a). Evaluating fil-
ter fuzzy analogy homogenous ensembles for software
development effort estimation. J. Softw. Evol. Process,
31(2).
Hosni, M., Idri, A., and Abran, A. (2019b). Improved ef-
fort estimation of heterogeneous ensembles using fil-
ter feature selection. In ICSOFT 2018 - Proceedings of
the 13th International Conference on Software Tech-
nologies, pages 405–412. SciTePress.
Hosni, M., Idri, A., Abran, A., and Nassif, A. B.
(2018). On the value of parameter tuning in hetero-
geneous ensembles effort estimation. Soft Comput.,
22(18):5977–6010.
Idri, A., Hosni, M., and Abran, A. (2016). Systematic map-
ping study of ensemble effort estimation. In Proceed-
ings of the 11th International Conference on Evalua-
tion of Novel Software Approaches to Software Engi-
neering, pages 132–139.
Jeffery, R., Ruhe, M., and Wieczorek, I. (2001). Using pub-
lic domain metrics to estimate software development
effort. In Seventh International Software Metrics Sym-
posium. METRICS 2001, pages 16–27.
Labidi, T. and Sakhrawi, Z. (2023). On the value of parame-
ter tuning in stacking ensemble model for software re-
gression test effort estimation. J. Supercomput., page
0123456789.
L
´
opez-Mart
´
ın, C. (2022). Machine learning techniques for
software testing effort prediction. Softw. Qual. J.,
30(1):65–100.
Minku, L. L. and Yao, X. (2013). An analysis of multi-
objective evolutionary algorithms for training ensem-
ble models based on different performance measures
in software effort estimation. In Proceedings of the
9th International Conference on Predictive Models in
Software Engineering - PROMISE ’13, pages 1–10.
Mittas, N. and Angelis, L. (2013). Ranking and cluster-
ing software cost estimation models through a multi-
ple comparisons algorithm. IEEE Trans. Softw. Eng.,
39(4):537–551.
Miyazaki, Y. (1991). Method to estimate parameter values
in software prediction models. Inf. Softw. Technol.,
33(3):239–243.
Myrtveit, I., Stensrud, E., and Shepperd, M. (2005). Re-
liability and validity in comparative studies of soft-
ware prediction models. IEEE Trans. Softw. Eng.,
31(5):380–391.
Radli
´
nski, Ł. (2023). The impact of data quality on software
testing effort prediction. Electron., 12(7).
Shepperd, M. and MacDonell, S. (2012). Evaluating predic-
tion systems in software project estimation. Inf. Softw.
Technol., 54(8):820–827.
Simon, H. (1999). Neural networks: a comprehensive foun-
dation. MacMillan Publishing Company, 2nd edition.
Song, L., Minku, L. L., and Yao, X. (2013). The impact of
parameter tuning on software effort estimation using
learning machines. In Proceedings of the 9th Interna-
tional Conference on Predictive Models in Software
Engineering.
Wen, J., Li, S., Lin, Z., Hu, Y., and Huang, C. (2012). Sys-
tematic literature review of machine learning based
software development effort estimation models. Inf.
Softw. Technol., 54(1):41–59.
KDIR 2024 - 16th International Conference on Knowledge Discovery and Information Retrieval
524