fuzzy-based medical system for pattern mining in a
distributed environment: Application to diagnostic and
co-morbidity. Appl Soft Comput 122, 108870.
https://doi.org/10.1016/J.ASOC.2022.108870
Fisher, A., Rudin, C., Dominici, F., 2018. Model Class
Reliance: Variable Importance Measures for any
Machine Learning Model Class, from the.
Fung, G., Sandilya, S., Bharat Rao, R., 2005. Rule
extraction from linear support vector machines.
Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
32–40. https://doi.org/10.1145/1081870.1081878
Jang, J.S.R., 1993. ANFIS: Adaptive-Network-Based
Fuzzy Inference System. IEEE Trans Syst Man Cybern
23, 665–685. https://doi.org/10.1109/21.256541
Juang, C.F., Wen, C.Y., Chang, K.M., Chen, Y.H., Wu,
M.F., Huang, W.C., 2021. Explainable fuzzy neural
network with easy-to-obtain physiological features for
screening obstructive sleep apnea-hypopnea syndrome.
Sleep Med 85, 280–290. https://doi.org/10.1016/J.
SLEEP.2021.07.012
Kitchenham, B., Charters, S., 2007. Guidelines for
performing systematic literature reviews in software
engineering. Technical Report EBSE-2007-01, School
of Computer Science and Mathematics, Keele
University.
Liu, F., Ng, G.S., Quek, C., Loh, T.F., 2006. Artificial
ventilation modeling using neuro-fuzzy hybrid system.
IEEE International Conference on Neural Networks -
Conference Proceedings 2859–2864.
https://doi.org/10.1109/IJCNN.2006.247215
Loyola-Gonzalez, O., 2019. Black-box vs. White-Box:
Understanding their advantages and weaknesses from a
practical point of view. IEEE Access 7, 154096–
154113. https://doi.org/10.1109/ACCESS.2019.
2949286
Lundberg, S.M., Allen, P.G., Lee, S.-I., 2017. A Unified
Approach to Interpreting Model Predictions. Adv
Neural Inf Process Syst 30.
Mamdani, E.H., Assilian, S., 1975. An experiment in
linguistic synthesis with a fuzzy logic controller. Int J
Man Mach Stud 7, 1–13.
https://doi.org/10.1016/S0020-7373(75)80002-2
Markowska-Kaczmar, U., Trelak, W., 2003. Extraction of
Fuzzy Rules from Trained Neural Network Using
Evolutionary Algorithm *. European Symposium on
Artificial Neural Networks.
Nguyen, T.L., Kavuri, S., Park, S.Y., Lee, M., 2022.
Attentive Hierarchical ANFIS with interpretability for
cancer diagnostic. Expert Syst Appl 201, 117099.
https://doi.org/10.1016/J.ESWA.2022.117099
Ouifak, H., Idri, A., 2023a. On the performance and
interpretability of Mamdani and Takagi-Sugeno-Kang
based neuro-fuzzy systems for medical diagnosis. Sci
Afr e01610.
https://doi.org/10.1016/J.SCIAF.2023.E01610
Ouifak, H., Idri, A., 2023b. Application of neuro-fuzzy
ensembles across domains: A systematic review of the
two last decades (2000–2022). Eng Appl Artif Intell
124, 106582. https://doi.org/10.1016/J.
ENGAPPAI.2023.106582
Padrón-Tristán, J.F., Cruz-Reyes, L., Espín-Andrade, R.A.,
Llorente-Peralta, C.E., 2021. A Brief Review of
Performance and Interpretability in Fuzzy Inference
Systems. Studies in Computational Intelligence 966,
237–266. https://doi.org/10.1007/978-3-030-71115-
3_11/TABLES/6
Sabol, P., Sincak, P., Ogawa, K., Hartono, P., 2019.
Explainable Classifier Supporting Decision-making for
Breast Cancer Diagnosis from Histopathological
Images. Proceedings of the International Joint
Conference on Neural Networks 2019-July.
https://doi.org/10.1109/IJCNN.2019.8852070
Shen, T., Wang, J., Gou, C., Wang, F.Y., 2020. Hierarchical
Fused Model with Deep Learning and Type-2 Fuzzy
Learning for Breast Cancer Diagnosis. IEEE
Transactions on Fuzzy Systems 28, 3204–3218.
https://doi.org/10.1109/TFUZZ.2020.3013681
Sugeno, M., Kang, G.T., 1988. Structure identification of
fuzzy model. Fuzzy Sets Syst 28, 15–33.
https://doi.org/10.1016/0165-0114(88)90113-3
Tan, T.Z., Quek, C., Ng, G.S., 2005. Ovarian cancer
diagnosis by hippocampus and neocortex-inspired
learning memory structures. Neural Netw 18, 818–825.
https://doi.org/10.1016/J.NEUNET.2005.06.027
Thai, H.T., 2022. Machine learning for structural
engineering: A state-of-the-art review. Structures 38,
448–491. https://doi.org/10.1016/J.ISTRUC.2022.
02.003
Yang, C., Huang, Q., Li, Z., Liu, K., Hu, F., 2017. Big Data
and cloud computing: innovation opportunities and
challenges. Int J Digit Earth 10, 13–53.
https://doi.org/10.1080/17538947.2016.1239771
Zadeh, L.A., 1974. The Concept of a Linguistic Variable
and its Application to Approximate Reasoning.
Learning Systems and Intelligent Robots 1–10.
https://doi.org/10.1007/978-1-4684-2106-4_1
Zerouaoui, H., Idri, A., 2021. Reviewing Machine Learning
and Image Processing Based Decision-Making Systems
for Breast Cancer Imaging. J Med Syst 45, 1–20.
https://doi.org/10.1007/S10916-020-01689-
1/FIGURES/19
Zhang, S., Sakulyeva, T.N., Pitukhin, E.A., Doguchaeva,
S.M., Zhang, S., Sakulyeva, T.N., Pitukhin, E.A.,
Doguchaeva, S.M., 2020. Neuro-Fuzzy and Soft
Computing - A Computational Approach to Learning
and Artificial Intelligence. International Review of
Automatic Control (IREACO) 13, 191–199.
https://doi.org/10.15866/IREACO.V13I4.19179
Zhou, T., Zhou, Y., Gao, S., 2021. Quantitative-integration-
based TSK fuzzy classification through improving the
consistency of multi-hierarchical structure. Appl Soft
Comput 106, 107350. https://doi.org/10.1016/J.
ASOC.2021.107350
Zizaan, A., Idri, A., 2023. Machine learning based Breast
Cancer screening: trends, challenges, and opportunities.
Comput Methods Biomech Biomed Eng Imaging Vis
11, 976–996. https://doi.org/10.1080/21681163.
2023.2172615