ular swarm-based metaheuristic algorithms. Neural
Computing and Applications, 31(11):7665–7683.
Hutter, F., Hoos, H., and Leyton-Brown, K. (2014). An ef-
ficient approach for assessing hyperparameter impor-
tance. In International conference on machine learn-
ing, pages 754–762. PMLR.
Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011).
Sequential model-based optimization for general al-
gorithm configuration. In Learning and Intelligent
Optimization: 5th International Conference, LION 5,
Rome, Italy, January 17-21, 2011. Selected Papers 5,
pages 507–523. Springer.
Jerebic, J., Mernik, M., Liu, S.-H., Ravber, M., Baketari
´
c,
M., Mernik, L., and
ˇ
Crepin
ˇ
sek, M. (2021). A novel di-
rect measure of exploration and exploitation based on
attraction basins. Expert Systems with Applications,
167:114353.
Kahraman, H. T., Aras, S., and Gedikli, E. (2020). Fitness-
distance balance (fdb): a new selection method for
meta-heuristic search algorithms. Knowledge-Based
Systems, 190:105169.
Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P.
(1983). Optimization by simulated annealing. science,
220(4598):671–680.
Kochenderfer, M. J. and Wheeler, T. A. (2019). Algorithms
for optimization. Mit Press.
Kudela, J. (2022). A critical problem in benchmarking and
analysis of evolutionary computation methods. Nature
Machine Intelligence, 4(12):1238–1245.
Lagarias, J. C., Poonen, B., and Wright, M. H. (2012).
Convergence of the restricted nelder–mead algorithm
in two dimensions. SIAM Journal on Optimization,
22(2):501–532.
Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright,
P. E. (1998). Convergence properties of the nelder–
mead simplex method in low dimensions. SIAM Jour-
nal on optimization, 9(1):112–147.
Lavinas, Y., Ladeira, M., Ochoa, G., and Aranha, C. (2024).
Multiobjective evolutionary component effect on al-
gorithm behaviour. ACM Transactions on Evolution-
ary Learning and Optimization, 4(2):1–24.
L
´
opez-Ib
´
a
˜
nez, M., Dubois-Lacoste, J., C
´
aceres, L. P., Bi-
rattari, M., and St
¨
utzle, T. (2016). The irace package:
Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58.
L
´
opez-Ib
´
a
˜
nez, M., St
¨
utzle, T., and Dorigo, M. (2018). Ant
colony optimization: A component-wise overview. In
Mart
´
ı, R., Pardalos, P. M., and Resende, M. G. C.,
editors, Handbook of heuristics, volume 932, pages
371–407. Springer International Publishing, Cham.
Morales-Castaneda, B., Maciel-Castillo, O., Navarro,
M. A., Aranguren, I., Valdivia, A., Ramos-Michel, A.,
Oliva, D., and Hinojosa, S. (2022). Handling stag-
nation through diversity analysis: A new set of op-
erators for evolutionary algorithms. In 2022 IEEE
Congress on Evolutionary Computation (CEC), pages
1–7. IEEE.
Nelder, J. A. and Mead, R. (1965). A simplex method
for function minimization. The computer journal,
7(4):308–313.
Nikolikj, A., Kostovska, A., Vermetten, D., Doerr, C., and
Eftimov, T. (2024). Quantifying individual and joint
module impact in modular optimization frameworks.
arXiv preprint arXiv:2405.11964.
¨
Oz, H. (2005). Evolutionary energy method (eem): An
aerothermoservoelectroelastic application. In Varia-
tional and Extremum Principles in Macroscopic Sys-
tems, pages 641–671. Elsevier.
Ross, R., Winstead, M., and McEvilley, M. (2022). Engi-
neering Trustworthy Secure Systems. Technical Re-
port NIST Special Publication (SP) 800-160 Vol. 1
Rev. 1, National Institute of Standards and Technol-
ogy.
Sharma, S., Blank, J., Deb, K., and Panigrahi, B. K. (2021).
Ensembled crossover based evolutionary algorithm
for single and multi-objective optimization. In 2021
IEEE Congress on Evolutionary Computation (CEC),
pages 1439–1446. IEEE.
Steinhardt, P. J. and Turok, N. (2002). A cyclic model of
the universe. Science, 296(5572):1436–1439.
Storn, R. and Price, K. (1997). Differential evolution–a
simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimiza-
tion, 11:341–359.
Strze
˙
zek, A., Trammer, L., and Sydow, M. (2015). Diver-
gene: Experiments on controlling population diver-
sity in genetic algorithm with a dispersion operator.
In 2015 Federated Conference on Computer Science
and Information Systems (FedCSIS), pages 155–162.
IEEE.
Thymianis, M. and Tzanetos, A. (2022). Is integration of
mechanisms a way to enhance a nature-inspired algo-
rithm? Natural Computing, pages 1–21.
Tu
ˇ
sar, T., Hansen, N., and Brockhoff, D. (2017). Anytime
benchmarking of budget-dependent algorithms with
the coco platform. In IS 2017-International multicon-
ference Information Society, pages 1–4.
Tzanetos, A. (2023). Does the field of nature-inspired com-
puting contribute to achieving lifelike features? Arti-
ficial Life, 29(4):487–511.
Vermetten, D., Caraffini, F., Kononova, A. V., and B
¨
ack,
T. (2023). Modular differential evolution. In Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference, pages 864–872.
Vermetten, D., van Stein, B., Caraffini, F., Minku, L. L.,
and Kononova, A. V. (2022). Bias: a toolbox for
benchmarking structural bias in the continuous do-
main. IEEE Transactions on Evolutionary Computa-
tion, 26(6):1380–1393.
Wang, P., Xue, B., Liang, J., and Zhang, M. (2023). Feature
selection using diversity-based multi-objective binary
differential evolution. Information Sciences, 626:586–
606.
Ye, F., Doerr, C., Wang, H., and B
¨
ack, T. (2022). Auto-
mated configuration of genetic algorithms by tuning
for anytime performance. IEEE Transactions on Evo-
lutionary Computation, 26(6):1526–1538.
Zaharie, D. (2009). Influence of crossover on the behav-
ior of differential evolution algorithms. Applied soft
computing, 9(3):1126–1138.
ECTA 2024 - 16th International Conference on Evolutionary Computation Theory and Applications
382