showing the efficiency of this approach in controlling
complex systems (Cifdaloz et al., 2008), (Trangbaek
and Bendtsen, 2009), and (Mahtout et al., 2018).
ACKNOWLEDGEMENTS
This work was co-funded by the European Union
under Project Robotics and Advanced Industrial
Production CZ.02.01.01/00/22_008/0004590.
REFERENCES
Anderson, B.D.O. (1988). From Youla-Kucera to
identification, adaptive and nonlinear control,
Automatica, vol. 34, pp. 1485–1506.
Cifdaloz, O., Rodriguez, A.A., Anderies, J.M. (2008).
Control of distributed parameter systems subject to
convex constraints: Applications to irrigation systems
and hypersonic vehicles. In 47th IEEE Conference on
Decision and Control, Cancun, Mexico, 2008, pp. 865–
870.
Hansen, F., Franklin, G., Kosut, R. (1989). Closed-loop
identification via the fractional representation:
Experiment design. In American Control Conference,
Pittsburgh, PA, USA, pp. 1422–1427.
Henrion, D., Tarbouriech, S., Kučera, V. (2001). Control of
linear systems subject to input constraints: a polynomial
approach. Automatica, 37, 597–604.
Henrion, D., Šebek, M., Kučera, V. (2003). Positive
polynomials and robust stabilization with fixed-order
controllers. IEEE Transactions on Automatic Control,
48, 1178–1186.
Henrion, D., Tarbouriech, S., Kučera, V. (2005a). Control
of linear systems subject to time-domain constraints
with polynomial pole placement and LMIs. IEEE
Transactions on Automatic Control, 50, 1360–1364.
Henrion, D., Kučera, V., Molina, A. (2005b). Optimizing
simultaneously over the numerator and denominator
polynomials in the Youla-Kučera parametrization.
IEEE Transactions on Automatic Control, 50, 1369–
1374.
Kučera, V. (1975). Stability of discrete linear control
systems, IFAC Proceedings Volumes, vol. 8, no. 1, part
1, pp. 573–578.
Kučera, V. (1979). Discrete Linear Control: The
Polynomial Equation Approach, Wiley. Chichester,
UK.
Kučera, V. (1993). Diophantine equations in control – a
survey. Automatica, 29, 1361-1375.
Kučera, V. (2007). Polynomial control: past, present, and
future. International Journal of Robust and Nonlinear
Control, 17, 682–705.
Kučera, V. (2011). A method to teach the parameterization
of all stabilizing controllers. IFAC Proceedings
Volumes, 44, 1, 6355–6360.
Mahtout, I., Navas, F., Gonzalez, D., Milanes, V.,
Nashashibi, F. (2018). Youla-Kucera based lateral
controller for autonomous vehicle. In 21st International
Conference on Intelligent Transportation Systems,
Maui, HI, USA, pp. 3281–3286.
Mahtout, I., Navas, F., Milanes, V., Nashashibi, F. (2020).
Advances in Youla-Kucera parametrization: A Review,
Annual Reviews in Control, vol. 49, pp. 81–94.
Nett, C.N., Jacobson, C.A., Balas, M.J. (1984). A
connection between state-space and doubly coprime
fractional representations. IEEE Transactions on
Automatic Control, 29, 831–832.
Quadrat, A. (2003). On a generalization of the Youla-
Kučera parametrization. Part I: The fractional ideal
approach to SISO systems, Systems & Control Letters,
vol. 50, pp. 135–148.
Trangbaek, K., Bendtsen, J. (2009). Stable controller
reconfiguration through terminal connections – a
practical example. In IEEE International Conference
on Control and Automation, Christchurch, New
Zealand, pp. 2037–2042.
Vidyasagar, M. (1985). Control System Synthesis: A
Factorization Approach, MIT Press. Cambridge, MA.
Youla, D.C., Bongiorno, J.J., Jabr, H.A. (1976a). Modern
Wiener-Hopf design of optimal controllers, Part I: The
single-input case, IEEE Transactions on Automatic
Control, vol. 21, pp. 3–14.
Youla, D.C., Jabr, H.A., Bongiorno, J.J. (1976b). Modern
Wiener-Hopf design of optimal controllers, Part II: The
multivariable case, IEEE Transactions on Automatic
Control, vol. 21, pp. 319–338.