Hemila, M. and Ro¨lke, H. (2023). Recommendation
system for journals based on ELMo and deep learning.
In 2023 10th IEEE Swiss Conference on Data Science
(SDS), pages 97–103. IEEE.
Hofmann, V., Pierrehumbert, J. B., and Schu¨tze, H. (2020).
Dynamic contextualized word embeddings. arXiv
preprint arXiv:2010.12684.
Howard, J. and Ruder, S. (2018). Universal language model
fine-tuning for text classification. arXiv preprint
arXiv:1801.06146.
Huang, J. Y., Huang, K.-H., and Chang, K.-W. (2021).
Disentangling semantics and syntax in sentence
embeddings with pre-trained language models. arXiv
preprint arXiv:2104.05115.
Ismail, Q., Alissa, K., and Duwairi, R. M. (2023). Arabic
news summarization based on t5 transformer approach.
In 2023 14th International Conference on Information
and Communication Systems (ICICS), pages 1–7.
IEEE.
Jain, V. and Kashyap, K. L. (2024). Enhanced word vector
space with ensemble deep learning model for covid-19
hindi text sentiment analysis. Multimedia Tools and
Applications, pages 1–22.
Kapoor, P., Kaushal, S., and Kumar, H. (2022). A review
on architecture and communication protocols for
electric vehicle charging system. In Proceedings of the
4th International Conference on Information
Management Machine Intelligence, pages 1–6.
Katsarou, S., Rodr´ıguez-Ga´lvez, B., and Shanahan,
J. (2022). Measuring gender bias in contextualized
embeddings. Computer Sciences and Mathematics
Forum, 3(1):3.
Katz, S. (1987). Estimation of probabilities from sparse
data for the language model component of a speech
recognizer. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 35(3):400–401.
Kim, T., Choi, J., and Lee, S.-g. (2018). Snu ids at semeval
2018 task 12 sentence encoder with contextualized
vectors for argument reasoning comprehension. arXiv
preprint arXiv:1805.07049.
Kumar, S. and Solanki, A. (2023). Named entity
recognition for natural language understanding using
Bert model. In AIP Conference Proceedings, volume
2938. AIP Publishing.
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. (2019). Albert: A lite Bert for self-
supervised learning of language representations. arXiv
preprint arXiv:1909.11942.
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
(2019). Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized Bert pre-training
approach. arXiv preprint arXiv:1907.11692.
Mala, J. B., Angel SJ, A., Raj SM, A., and Rajan, R. (2023).
Efficacy of electra-based language model in sentiment
analysis. In 2023 International Conference on
Intelligent Systems for Communication, IoT and
Security (ICIS-CoIS), pages 682–687. IEEE.
Mars, M. (2022). From word embeddings to pre-trained
language models: A state-of-the-art walkthrough. Ap-
plied Sciences, 12(17):8805.
McCann, B., Bradbury, J., Xiong, C., and Socher, R.
(2017). Learned in translation: Contextualized word
vectors. Advances in Neural Information Processing
Systems, 30.
Melamud, O., Goldberger, J., and Dagan, I. (2016).
context2vec: Learning generic context embedding with
bidirectional LSTM. In Proceedings of the 20th
SIGNLL Conference on Computational Natural
Language Learning, pages 51–61. Association for
Computational Linguistics.
Mercier, D., Rizvi, S. T. R., Rajashekar, V., Dengel, A., and
Ahmed, S. (2020). Impactcite: An Xlnet-based method
for citation impact analysis. arXiv preprint
arXiv:2005.06611.
Mikolov, T. (2013). Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781, 3781.
Neelima, A. and Mehrotra, S. (2023). A comprehensive
review on word embedding techniques. 2023
International Conference on Intelligent Systems for
Communication, IoT and Security (ICISCoIS), pages
538– 543.
Patil, R., Boit, S., Gudivada, V., and Nandigam, J. (2023).
A survey of text representation and embedding
techniques in nlp. IEEE Access, 11:36120–36146.
Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1532–1543. Association for Computational
Linguistics.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. (2018). Deep
contextualized word representations. In Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, volume 1, pages 2227– 2237.
Association for Computational Linguistics.
Radford, A. (2018). Improving language understanding by
generative pre-training. arXiv preprint.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. (2019). Language models are
unsupervised multitask learners. OpenAI Blog, 1(8):9.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. (2020).
Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67.
Raju, R., Pati, P. B., Gandheesh, S. A., Sannala, G. S., and
Suriya, K. S. (2024). Grammatical versus spelling error
correction: An investigation into the responsiveness of
transformer-based language models using Bart and
MarianMT. Journal of Information & Knowledge
Management.