REFERENCES
World Health Organization. Epilepsy Fact Sheet (2019.
Retrieved from https://www.who.int/news-room/fact-
sheets/detail/epilepsy,
Kwan, P., & Brodie, M. J. (2000). Early Identification of
Refractory Epilepsy. New England Journal of
Medicine, 342(5), 314–319,
https://doi.org/10.1056/NEJM200002033420503
Schulze-Bonhage, A. (2008). Challenges in epilepsy:
Identifying and characterizing treatment-resistant
patients. The Neurologist, 14(2), 35–44,
https://doi.org/10.1097/NRL.0b013e3181668884
Zhang, Y., Qin, Y., Zhou, M., & Wang, H. (2020). Deep
learning for epileptic seizure prediction: A
comprehensive review. Frontiers in Neuroscience, 14,
576124, https://doi.org/10.3389/fnins.2020.576124
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z.,
Cormode, G., Cummings, R., D'Oliveira, R.,
Rouayheb, S. E., Evans, D., Gardner, J. R., Garrett, Z.,
Gascoigne, J., Ghazi, B., Gibbons, P. B., Gruteser, M.,
Zhang, Z. 2019. Advances and Open Problems in
Federated Learning. arXiv preprint arXiv:1912.04977.
https://arxiv.org/abs/1912.04977
Qin, Y., Wang, H., Zhao, Y., Zhou, M., & Li, J. (2021).
Privacy-Preserving Federated Learning for Epileptic
Seizure Detection: Challenges and Opportunities.
Frontiers in Neuroscience, 15, 641739,
https://doi.org/10.3389/fnins.2021.641739
Tian, L. (2019). Federated Learning: Challenges, Methods
and Future Directions. Available online:
https://blog.ml.cmu.edu/2019/11/12/federated-
learning-challenges-methods-and-future-directions/
TUH EEG Seizure
Corpus,https://isip.piconepress.com/projects/tuh_eeg/
html/downloads.shtml, last accessed 2024/4/18.
CHB-MIT Scalp EEG
Database,https://physionet.org/pn6/chbmit/, last
accessed 2024/4/20.
Epilepsy EEG Database (EEG-ID),
https://www.epilepsy.uni-freiburg.de/freiburg-
seizure-prediction-project/eeg-database, last accessed
2024/4/24
EPILEPSIAE Dataset
,https://pubmed.ncbi.nlm.nih.gov/20863589/, last
accessed 2024/4/26
P. Mirowski, D. Madhavan, Y. LeCun, and R. Kuzniecky.
(2009). Classification of Patterns of EEG
Synchronization for Seizure Prediction. Clinical
Neurophysiology, vol. 120, no. 11, pp. 1927-1940.
F. Mormann, R. G. Andrzejak, C. E. Elger, and K. Lehnertz.
(2007). Seizure Prediction: The Long and Winding
Road. Brain, vol. 130, no. 2, pp. 314-333.
A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis. (2019).
Epileptic Seizure Detection in EEGs Using Time-
Frequency Analysis. IEEE Transactions on
Information Technology in Biomedicine, vol. 13, no.
5, pp. 703-710.
G. Wu, K. Yu, H. Zhou, X. Wu, and S. Su. (2024). Time-
Series Anomaly Detection Based on Dynamic
Temporal Graph Convolutional Network for Epilepsy
Diagnosis, Bioengineering, vol. 11, no. 1, p. 53, doi:
10.3390/bioengineering11010053.
M. P. Hosseini, D. Pompili, and K. V. Elisevich. (2020).
Optimized Deep Learning for EEG Big Data and
Seizure Prediction BCI via Internet of Things. IEEE
Trans. Big Data, vol. 6, no. 2, pp. 250-260.
U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and H.
Adeli. (2018). Deep Convolutional Neural Network
for the Automated Detection and Diagnosis of Seizure
Using EEG Signals. Comput. Biol. Med., vol. 100, pp.
270-278.
A. Shoeibi, M. Khodatars, N. Ghassemi, M. Jafari, P.
Moridian, R. Alizadehsani, M. Panahiazar, F.
Khozeimeh, A. Zare, H. Hosseini-Nejad, A. Khosravi,
A. F. Atiya, D. Aminshahidi, S. Hussain, M. Rouhani,
S. Nahavandi, and U. R. Acharya. (2021). Epileptic
Seizures Detection Using Deep Learning Techniques:
A Review. Int. J. Environ. Res. Public Health, vol. 18,
no. 11, p. 5780.
P. Kunekar, M. K. Gupta, and P. Gaur. (2024). Detection of
epileptic seizure in EEG signals using machine
learning and deep learning techniques. Journal of
Engineering and Applied Science, vol. 71, no. 21.
Y. Xu, J. Yang, S. Zhao, H. Wu, and M. Sawan. (2020). An
End-to-End Deep Learning Approach for Epileptic
Seizure Prediction. in 2020 2nd IEEE International
Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 31-35. doi:
10.1109/AICAS48895.2020.9079870.
H. Liu, M. Li, H. Zhang, W. Li, and C. Shen. (2019).
Seizure prediction using multimodal data fusion and
novel deep learning model," Biomed. Signal Process.
Control, vol. 52, pp. 204-211.
Chen, Fangyi, Ina Chen, Muhammad Zafar, Saurabh R.
Sinha, and Xiao Hu. (2022). Seizures detection using
multimodal signals: a scoping review: Physiological
Measurement, vol. 43, no. 7, Art. no. 07TR01, doi:
10.1088/1361-6579/ac7a8d.
Yu, Shuang, Rima El Atrache, Jianbin Tang, Michele
Jackson, Adam Makarucha, Sarah Cantley, Theodore
Sheehan. (2023). Artificial intelligence-enhanced
epileptic seizure detection by wearables," Epilepsia,
vol. 64, no. 5, pp. 1009-1018. doi: 10.1111/epi.17774.
Moridani, M., and H. Farhadi. (2017). Heart rate variability
as a biomarker for epilepsy seizure prediction,"
Bratislava Medical Journal, vol. 118, no. 01, pp. 3-8,
doi: 10.4149/BLL_2017_001.
J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon. (2016). Federated Learning:
Strategies for Improving Communication Efficiency.
arXiv preprint arXiv:1610.05492.