012148. https://doi.org/10.1088/1757-
899X/407/1/012148
Bumthang, in. (2018). ARIMA model to forecast
international tourist visit. J. Phys.: Conf. Ser, 1039,
12023. https://doi.org/10.1088/1742-
6596/1039/1/012023
Chang, Y. W., & Tsai, C. Y. (2017). Apply deep learning
neural network to forecast number of tourists.
Proceedings - 31st IEEE International Conference on
Advanced Information Networking and Applications
Workshops, WAINA 2017, 259–264.
https://doi.org/10.1109/WAINA.2017.125
Choy, D. J. L. (1984). Forecasting tourism revisited.
Tourism Management, 5(3), 171–176.
https://doi.org/10.1016/0261-5177(84)90036-0
Essien, A., & Chukwukelu, G. (2022). Deep learning in
hospitality and tourism: a research framework agenda
for future research. International Journal of
Contemporary Hospitality Management, 34(12), 4480–
4515. https://doi.org/10.1108/IJCHM-09-2021-
1176/FULL/XML
Goh, C., Law, R., & Mok, H. M. K. (2008). Analyzing and
Forecasting Tourism Demand: A Rough Sets
Approach. Journal of Travel Research, 46(3), 327–338.
https://doi.org/10.1177/0047287506304047
Gu, H., Wang, Y., Hong, S., & Gui, G. (2019). Blind
channel identification aided generalized automatic
modulation recognition based on deep learning. IEEE
Access, 7, 110722–110729.
https://doi.org/10.1109/ACCESS.2019.2934354
Henseler, M., Maisonnave, H., & Maskaeva, A. (2022).
Economic impacts of COVID-19 on the tourism sector
in Tanzania. Annals of Tourism Research Empirical
Insights, 3(1), 100042.
https://doi.org/10.1016/J.ANNALE.2022.100042
Huang, J. H., & Min, J. C. H. (2002). Earthquake
devastation and recovery in tourism: the Taiwan case.
Tourism Management, 23(2), 145–154.
https://doi.org/10.1016/S0261-5177(01)00051-6
Kontogianni, A., Alepis, E., & Patsakis, C. (2022).
Promoting smart tourism personalised services via a
combination of deep learning techniques. Expert
Systems with Applications, 187, 115964.
https://doi.org/10.1016/J.ESWA.2021.115964
Kyara, V. C., Rahman, M. M., & Khanam, R. (2022).
Investigating the environmental externalities of tourism
development: evidence from Tanzania. Heliyon, 8(6),
e09617.
https://doi.org/10.1016/J.HELIYON.2022.E09617
Li, M., Zhang, C., Sun, S., & Wang, S. (2023). A novel deep
learning approach for tourism volume forecasting with
tourist search data. International Journal of Tourism
Research, 25(2), 183–197.
https://doi.org/10.1002/JTR.2558
Li, Y., & Cao, H. (2018). Prediction for Tourism Flow
based on LSTM Neural Network. Procedia Computer
Science, 129, 277–283.
https://doi.org/10.1016/J.PROCS.2018.03.076
Liu, Q., Liu, X., Jiang, B., & Yang, W. (2011). Forecasting
incidence of hemorrhagic fever with renal syndrome in
China using ARIMA model. BMC Infectious Diseases,
11, 218. https://doi.org/10.1186/1471-2334-11-218
Luo, Z., Cai, X., Tanaka, K., Takiguchi, T., Kinkyo, T., &
Hamori, S. (2019). Can We Forecast Daily Oil Futures
Prices? Experimental Evidence from Convolutional
Neural Networks. Journal of Risk and Financial
Management, 12(1), 9.
https://doi.org/10.3390/jrfm12010009
Makala, D., & Li, Z. (2019). ECONOMIC
FORECASTING WITH DEEP LEARNING: CRUDE
OIL. MATTER: International Journal of Science and
Technology, 5(2), 213–228.
https://doi.org/10.20319/mijst.2019.52.213228
Petrevska, B. (2017). Predicting tourism demand by
A.R.I.M.A. models. Economic Research-Ekonomska
Istraživanja, 30(1), 939–950.
https://doi.org/10.1080/1331677X.2017.1314822
Sato, R. C. (2013). Disease management with ARIMA
model in time series. Einstein, 11(1), 128.
https://doi.org/10.1590/S1679-45082013000100024
Tanzania: number of tourist arrivals 2015-2022 | Statista.
(n.d.). Retrieved July 29, 2023, from
https://www.statista.com/statistics/1248890/tourist-
arrivals-in-tanzania/
Tanzania Tourism Sector - February 2023 Update. (n.d.).
Retrieved July 26, 2023, from
https://www.tanzaniainvest.com/tourism
Vector Autoregression (VAR) - Comprehensive Guide with
Examples in Python - Machine Learning Plus. (n.d.).
Retrieved July 27, 2023, from
https://www.machinelearningplus.com/time-
series/vector-autoregression-examples-python/
Wamboye, E. F., Nyaronga, P. J., & Sergi, B. S. (2020).
What are the determinants of international tourism in
Tanzania? World Development Perspectives, 17,
100175. https://doi.org/10.1016/J.WDP.2020.100175
What is Artificial Intelligence (AI) ? | IBM. (n.d.). Retrieved
July 27, 2023, from
https://www.ibm.com/topics/artificial-intelligence
Witt, S. F., & Witt, C. A. (1995). Forecasting tourism
demand: A review of empirical research. International
Journal of Forecasting, 11(3), 447–475.
https://doi.org/10.1016/0169-2070(95)00591-7
Wong, K. K. F., Song, H., & Chon, K. S. (2006). Bayesian
models for tourism demand forecasting. Tourism
Management, 27(5), 773–780.
https://doi.org/10.1016/J.TOURMAN.2005.05.017
Wu, D. C. W., Ji, L., He, K., & Tso, K. F. G. (2020).
Forecasting Tourist Daily Arrivals With A Hybrid
Sarima–Lstm Approach.
Https://Doi.Org/10.1177/1096348020934046, 45(1),
52–67. https://doi.org/10.1177/1096348020934046
Yue, Y., Wei, M., & Yuan, S. (2017). Forecast related to
linear regression of China’s tourism market. Journal of
Interdisciplinary Mathematics, 20(6–7), 1367–1371.
https://doi.org/10.1080/09720502.2017.1386472