
6 CONCLUSIONS
In conclusion, following the extensive research car-
ried out in this paper, it is confirmed with certainty
that the iris is a biometric feature that meets all the
necessary conditions to be used in the implementation
of a reliable biometric recognition system. The exper-
imental results are gratifying for the development of
the KEYE mobile application, so the objectives of this
research were achieved.
REFERENCES
Abdulkader, S., Atia, A., and Mostafa, M.-S. (2015). Au-
thentication systems: principles and threats. Com-
puter and Information Science, 8.
Ahmad, S. and Fuller, B. (2019). Thirdeye: Triplet based
iris recognition without normalization. 2019 IEEE
10th International Conference on Biometrics Theory,
Applications and Systems (BTAS), pages 1–9.
Ahmadi, N., Nilashi, M., Samad, S., Rashid, T., and Ah-
madi, H. (2019). An intelligent method for iris recog-
nition using supervised machine learning techniques.
Optics & Laser Technology, 120.
Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017).
Segnet: A deep convolutional encoder-decoder ar-
chitecture for image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
39(12):2481–2495.
Daugman, J. (1994). Biometric personal identification sys-
tem based on iris analysis.
Donida Labati, R., Genovese, A., Piuri, V., Scotti, F.,
and Vishwakarma, S. (2021). I-social-db: A labeled
database of images collected from websites and social
media for iris recognition. Image and Vision Comput-
ing, 105(104058):1–9. 0262-8856.
Flom, L. and Safir, A. (1987). Iris recognition system.
Gangwar, A., Joshi, A., Joshi, P., and Ramachandra, R.
(2019). Deepirisnet2: Learning deep-iriscodes from
scratch for segmentation-robust visible wavelength
and near infrared iris recognition.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2261–2269.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages
448–456, Lille, France. PMLR.
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., and
Matas, J. (2018). Deblurgan: Blind motion deblurring
using conditional adversarial networks. IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 8183–8192.
Lee, M. B., Kang, J. K., Yoon, H. S., and Park, K. R. (2021).
Enhanced iris recognition method by generative ad-
versarial network-based image reconstruction. IEEE
Access, 9:10120–10135.
Mehta, S., Rastegari, M., Caspi, A., Shapiro, L. G., and Ha-
jishirzi, H. (2018). Espnet: Efficient spatial pyramid
of dilated convolutions for semantic segmentation. In
European Conference on Computer Vision.
Nourmohammadi Khiarak, J., Golzari Oskouei, A.,
Salehi Nasab, S., Jaryani, F., Moafinejad, N., Pourmo-
hamad, R., Amini, Y., and Noshad, M. (2023). Kar-
talol: Transfer learning using deep neural network for
iris segmentation and localization: New dataset for iris
segmentation. Iran Journal of Computer Science, 6:1–
13.
Pourafkham, B. and Khotanlou, H. (2023). Es-net: Unet-
based model for the semantic segmentation of iris.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time ob-
ject detection. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 779–788.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical im-
age segmentation. In Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015,
pages 234–241, Cham. Springer International Pub-
lishing.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residu-
als and linear bottlenecks. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 4510–4520.
Singh, G., Singh, R., Saha, R., and Agarwal, N. (2020). Iwt
based iris recognition for image authentication. Pro-
cedia Computer Science, 171:1868–1876.
Tahir, A. A. K. and Anghelus
,
, S. (2019). Human biometrics
and biometric recognition systems; an overview. In
The 19th International Multidisciplinary Conference
”Professor Dorin Pavel - the founder of Romanian hy-
dropower”, volume 35, pages 431–446.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. volume 30, pages
5998–6008. Curran Associates Inc.
Wildes, R. (1997). Iris recognition: an emerging biomet-
ric technology. Proceedings of the IEEE, 85(9):1348–
1363.
Yang, K., Xu, Z., and Fei, J. (2021). Dualsanet: Dual spa-
tial attention network for iris recognition. In IEEE
Winter Conference on Applications of Computer Vi-
sion (WACV), pages 888–896.
Intelligent Human Iris Recognition System Based on Deep Learning Models
23