
Caba
˜
nes, J. V. and Santiago, F. (2023). Consuming Digi-
tal Disinformation: How Filipinos Engage with Racist
and Historically Distorted Online Political Content.
ISEAS - Yusof Ishak Institute.
Cabico, G. K. (2021). DOH: No ’mass testing’, just ’risk-
based testing’ to get more people tested. Rappler. Ac-
cessed: January 6, 2025.
Cabling, M., Turner, J., Hurtado-de Mendoza, A., Zhang,
Y., Jiang, X., Drago, F., and Sheppard, V. (2018).
Sentiment Analysis of an Online Breast Cancer Sup-
port Group: Communicating about Tamoxifen. Health
communication, 33(9):1158–1165.
Chan, E. Y., Chan, M. R. C., Ching, S. J. S., Sie, S. L.,
Lao, A. R., Bernadas, J. M. A. C., and Cheng, C. K.
(2022). How Health Information Spreads in Twit-
ter: The Whos and Whats of Philippine TB-data. In
HEALTHINF, pages 421–429.
Cohen, J. (1960). A coefficient of agreement for nominal
scales. Educational and psychological measurement,
20(1):37–46.
DeNardis, L. and Hackl, A. M. (2015). Internet governance
by social media platforms. Telecommunications Pol-
icy, 39(9):761–770.
Ghani, N. A., Hamid, S., Hashem, I. A. T., and Ahmed, E.
(2019). Social media big data analytics: A survey.
Computers in Human Behavior, 101:417–428.
Gotinga, J. (2020). ECQ, MECQ, GCQ, MGCQ: Who can
go where? Rappler. Accessed: January 6, 2025.
Guzman, J. P. (2024). Aspect-based sentiment
analysis of Filipino COVID-19 tweets with
memory networks. Master’s thesis, De La
Salle University Manila. Retrieved from
https://animorepository.dlsu.edu.ph/etdm math/10.
Himelboim, I., Xiao, X., Lee, D. K. L., Wang, M. Y., and
Borah, P. (2020). A Social Networks Approach to Un-
derstanding Vaccine Conversations on Twitter: Net-
work Clusters, Sentiment, and Certainty in HPV So-
cial Networks. Health Communication, 35(5):607–
615. PMID: 31199698.
Jalea, G. (2020). DOST: Despite 50% effectivity, PH still
can’t use Sinovac sans full data. CNN Philippines.
Accessed: January 6, 2025.
Jang, H., Rempel, E., Roth, D., Carenini, G., and Jan-
jua, N. Z. (2021). Tracking COVID-19 discourse on
twitter in North America: Infodemiology study using
topic modeling and aspect-based sentiment analysis.
Journal of medical Internet research, 23(2):e25431.
Ji, X., Chun, S. A., Wei, Z., and Geller, J. (2015). Twitter
sentiment classification for measuring public health
concerns. Social Network Analysis & Mining, 5:1–25.
Liu, B. (2012). Sentiment analysis and opinion mining.
Synthesis lectures on human language technologies,
5(1):1–167.
Luna, F. (2020). Testing capacity for COVID-19 still ’not
enough’ — Palace. The Philippine Star.
Mathayomchan, B., Taecharungroj, V., and Wat-
tanacharoensil, W. (2023). Evolution of COVID-19
tweets about Southeast Asian Countries: topic mod-
elling and sentiment analyses. Place Branding and
Public Diplomacy, 19:317–334.
McHugh, M. L. (2012). Interrater reliability: the kappa
statistic. Biochemia medica, 22(3):276–282.
Medialdea, S. (2020). Memorandum from the Executive
Secretary On Community Quarantine Over the Entire
Luzon and Further Guidelines for the Management of
the Coronavirus Disease 2019 (COVID-19) Situation.
Official Gazette. Accessed: January 6, 2025.
Navera, G. S. and Bernadas, J. M. A. C. (2022). ‘Shoot them
dead’: rhetorical constructions of the COVID-19 pan-
demic in Philippine presidential addresses. Journal of
Communication in Healthcare, 16(1):93–102.
Pamintuan, A. M. (2021). Face shield debate. The Philip-
pine Star. Accessed: January 6, 2025.
Pang, B., Lee, L., et al. (2008). Opinion Mining and Senti-
ment Analysis. Foundations and Trends® in informa-
tion retrieval, 2(1–2):1–135.
Pastor, C. K. (2020). Sentiment Analysis of Filipinos and
Effects of Extreme Community Quarantine Due to
Coronavirus (COVID-19) Pandemic. SSRN Electronic
Journal.
Patag, K. J. (2021). In world’s longest lockdown, process-
ing grief is a lonely and lingering struggle. The Philip-
pine Star. Accessed: January 6, 2025.
Ramteke, J., Shah, S., Godhia, D., and Shaikh, A. (2016).
Election result prediction using Twitter sentiment
analysis. In 2016 international conference on in-
ventive computation technologies (ICICT), volume 1,
pages 1–5. IEEE.
Rey, A. (2021). 2021 ECQ ‘ayuda’: What we know so far.
Rappler. Accessed: January 6, 2025.
Romero, P. (2020). Senators: 50% Sinovac efficacy unac-
ceptable. The Philippine Star.
Salinca, A. (2015). Business reviews classification using
sentiment analysis. In 2015 17th International Sym-
posium on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC), pages 247–250. IEEE.
Schiavo, R. (2013). Health communication: From theory to
practice, volume 217. John Wiley & Sons.
See, A. B. (2021). Rodrigo Duterte Is Using One
of the World’s Longest COVID-19 Lockdowns to
Strengthen His Grip on the Philippines. Time Mag-
azine. Accessed: January 6, 2025.
The Food and Drug Administration of the Philippines
(2021). Public Health Warning on Fake COVID-19
Vaccines. Accessed: January 6, 2025.
The Philippine Star (2021). EDITORIAL - Fake vaccines.
The Philippine Star. Accessed: January 6, 2025.
Tomacruz, S. (2021). Metro Manila’s ICU bed capacity at
‘alarming’ 64.5% as COVID-19 cases soar. Rappler.
Wang, Y. and Chen, Y. (2022). Characterizing discourses
about COVID-19 vaccines on Twitter: a topic model-
ing and sentiment analysis approach. Journal of Com-
munication in Healthcare, 16(1):103–112.
HEALTHINF 2025 - 18th International Conference on Health Informatics
350