
REFERENCES
Agga, A., Abbou, A., Labbadi, M., El Houm, Y., and Ali,
I. H. O. (2022). Cnn-lstm: An efficient hybrid deep
learning architecture for predicting short-term photo-
voltaic power production. Electric Power Systems Re-
search, 208:107908.
Bao, T., Zaidi, S. A. R., Xie, S., Yang, P., and Zhang, Z.-Q.
(2020). A cnn-lstm hybrid model for wrist kinemat-
ics estimation using surface electromyography. IEEE
Transactions on Instrumentation and Measurement,
70:1–9.
cheol Jeong, I., Bychkov, D., and Searson, P. C. (2018).
Wearable devices for precision medicine and health
state monitoring. IEEE Transactions on Biomedical
Engineering, 66(5):1242–1258.
Elgendi, M., Fletcher, R., Liang, Y., Howard, N., Lovell,
N. H., Abbott, D., Lim, K., and Ward, R. (2019). The
use of photoplethysmography for assessing hyperten-
sion. NPJ digital medicine, 2(1):60.
Gonz
´
alez, S., Hsieh, W.-T., and Chen, T. P.-C. (2023). A
benchmark for machine-learning based non-invasive
blood pressure estimation using photoplethysmogram.
Scientific Data, 10(1):149.
Kim, C.-S., Carek, A. M., Mukkamala, R., Inan, O. T.,
and Hahn, J.-O. (2015). Ballistocardiogram as prox-
imal timing reference for pulse transit time measure-
ment: Potential for cuffless blood pressure monitor-
ing. IEEE Transactions on Biomedical Engineering,
62(11):2657–2664.
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj,
M., and Inman, D. J. (2021). 1d convolutional neu-
ral networks and applications: A survey. Mechanical
systems and signal processing, 151:107398.
Lackland, D. T. and Weber, M. A. (2015). Global burden
of cardiovascular disease and stroke: hypertension at
the core. Canadian Journal of Cardiology, 31(5):569–
571.
Liang, Y., Liu, G., Chen, Z., and Elgendi, M. (2022). PPG-
BP Database.
Maqsood, S., Xu, S., Springer, M., and Mohawesh, R.
(2021). A benchmark study of machine learning for
analysis of signal feature extraction techniques for
blood pressure estimation using photoplethysmogra-
phy (ppg). Ieee Access, 9:138817–138833.
MHRA (2019). Blood pressure measurement devices.
Mukherjee, R., Ghosh, S., Gupta, B., and Chakravarty, T.
(2018). A literature review on current and proposed
technologies of noninvasive blood pressure measure-
ment. Telemedicine and e-Health, 24(3):185–193.
Reali, P., Lolatto, R., Coelli, S., Tartaglia, G., and Bianchi,
A. M. (2022). Information retrieval from photo-
plethysmographic sensors: A comprehensive compar-
ison of practical interpolation and breath-extraction
techniques at different sampling rates. Sensors,
22(4):1428.
Sana, F., Isselbacher, E. M., Singh, J. P., Heist, E. K.,
Pathik, B., and Armoundas, A. A. (2020). Wearable
devices for ambulatory cardiac monitoring: Jacc state-
of-the-art review. Journal of the American College of
Cardiology, 75(13):1582–1592.
Sapra, A., Malik, A., and Bhandari, P. (2020). Vital sign
assessment.
Slapni
ˇ
car, G., Mlakar, N., and Lu
ˇ
strek, M. (2019). Blood
pressure estimation from photoplethysmogram using
a spectro-temporal deep neural network. Sensors,
19(15):3420.
Van Houdt, G., Mosquera, C., and N
´
apoles, G. (2020). A
review on the long short-term memory model. Artifi-
cial Intelligence Review, 53:5929–5955.
Xing, D., Wang, Y., Sun, P., Huang, H., and Lin, E. (2023).
A cnn-lstm-att hybrid model for classification and
evaluation of growth status under drought and heat
stress in chinese fir (cunninghamia lanceolata). Plant
Methods, 19(1):66.
Xing, X., Ma, Z., Zhang, M., Zhou, Y., Dong, W., and Song,
M. (2019). An unobtrusive and calibration-free blood
pressure estimation method using photoplethysmog-
raphy and biometrics. Scientific reports, 9(1):8611.
A Novel Cuff-Less and Calibration-Free Blood Pressure Estimation Framework Using Single Photoplethysmogram
703