
AVDOS-VR: Affective Video Database with Physio-
logical Signals and Continuous Ratings Collected Re-
motely in VR. Scientific Data, 11(1).
Goodfellow, I. J., Erhan, D., Carrier, P. L., Courville, A.,
Mirza, M., Hamner, B., Cukierski, W., Tang, Y.,
Thaler, D., Lee, D.-H., Zhou, Y., Ramaiah, C., Feng,
F., Li, R., Wang, X., Athanasakis, D., Shawe-Taylor,
J., Milakov, M., Park, J., Ionescu, R., Popescu, M.,
Grozea, C., Bergstra, J., Xie, J., Romaszko, L., Xu,
B., Chuang, Z., and Bengio, Y. (2013). Challenges
in representation learning: A report on three machine
learning contests. In Lee, M., Hirose, A., Hou, Z.-
G., and Kil, R. M., editors, Neural Information Pro-
cessing, pages 117–124, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Hartley, R. and Zisserman, A. (2003). Multiple View Geom-
etry in Computer Vision. Cambridge University Press,
New York, NY, USA, 2 edition.
Hasan, M. R., Hossain, M. Z., Ghosh, S., Krishna, A., and
Gedeon, T. (2024). Empathy detection from text, au-
diovisual, audio or physiological signals: Task formu-
lations and machine learning methods.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. (2017). Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications.
Huc, M., Bush, K., Atias, G., Berrigan, L., Cox, S., and
Jaworska, N. (2023). Recognition of masked and un-
masked facial expressions in males and females and
relations with mental wellness. Frontiers in Psychol-
ogy, 14.
Kas, M., merabet, Y. E., Ruichek, Y., and Messoussi, R.
(2021). New framework for person-independent facial
expression recognition combining textural and shape
analysis through new feature extraction approach. In-
formation Sciences, 549:200–220.
Li, B. J., Bailenson, J. N., Pines, A., Greenleaf, W. J., and
Williams, L. M. (2017). A public database of immer-
sive vr videos with corresponding ratings of arousal,
valence, and correlations between head movements
and self report measures. Frontiers in Psychology, 8.
Li, S. and Deng, W. (2022). Deep facial expression recogni-
tion: A survey. IEEE Transactions on Affective Com-
puting, 13(3):1195–1215.
Ma, H., Lei, S., Celik, T., and Li, H.-C. (2024). Fer-yolo-
mamba: Facial expression detection and classification
based on selective state space.
Martin, O., Kotsia, I., Macq, B., and Pitas, I. (2006). The
enterface’ 05 audio-visual emotion database. In 22nd
International Conference on Data Engineering Work-
shops (ICDEW’06), pages 8–8.
Mathur, L., Spitale, M., Xi, H., Li, J., and Matari
´
c, M. J.
(2021). Modeling user empathy elicited by a robot sto-
ryteller. In 2021 9th International Conference on Af-
fective Computing and Intelligent Interaction (ACII),
pages 1–8.
Minaee, S., Minaei, M., and Abdolrashidi, A. (2021). Deep-
emotion: Facial expression recognition using atten-
tional convolutional network. Sensors, 21(9).
Mohamed, B., Daoud, M., Mohamed, B., and taleb ahmed,
A. (2022). Improvement of emotion recognition from
facial images using deep learning and early stopping
cross validation. Multimedia Tools and Applications,
81.
Poux, D., Allaert, B., Mennesson, J., Ihaddadene, N., Bi-
lasco, I. M., and Djeraba, C. (2020). Facial expres-
sions analysis under occlusions based on specificities
of facial motion propagation. Multimedia Tools and
Applications, 80(15):22405–22427.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2019). Mobilenetv2: Inverted residuals
and linear bottlenecks.
Shen, L. (2010). On a scale of state empathy during mes-
sage processing. Western Journal of Communication,
74:504–524.
Shin, D. (2018). Empathy and embodied experience in vir-
tual environment: To what extent can virtual reality
stimulate empathy and embodied experience? Com-
puters in Human Behavior, 78:64–73.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Somarathna, R., Bednarz, T., and Mohammadi, G. (2023).
Virtual reality for emotion elicitation – a review. IEEE
Transactions on Affective Computing, 14(4):2626–
2645.
Spreng, R. N., Mckinnon, M., Mar, R., and Levine, B.
(2009). The toronto empathy questionnaire: Scale de-
velopment and initial validation of a factor-analytic
solution to multiple empathy measures. Journal of
personality assessment, 91:62–71.
Sun, L., Lian, Z., Wang, K., He, Y., Xu, M., Sun, H., Liu,
B., and Tao, J. (2023). Svfap: Self-supervised video
facial affect perceiver.
Ventura, S. and Martingano, A. J. (2023). Roundtable:
Raising empathy through virtual reality. In Ventura,
S., editor, Empathy, chapter 3. IntechOpen, Rijeka.
Wegrzyn, M., Vogt, M., Kireclioglu, B., Schneider, J., and
Kissler, J. (2017). Mapping the emotional face. how
individual face parts contribute to successful emotion
recognition. PLOS ONE, 12.
Wingenbach, T. S. H. (2023). Facial EMG – Investigating
the Interplay of Facial Muscles and Emotions, pages
283–300. Springer International Publishing, Cham.
Xue, T., Ali, A. E., Zhang, T., Ding, G., and Cesar, P.
(2023). Ceap-360vr: A continuous physiological and
behavioral emotion annotation dataset for 360
◦
vr
videos. IEEE Transactions on Multimedia, 25:243–
255.
Yao, L., Wan, Y., Ni, H., and Xu, B. (2021). Action unit
classification for facial expression recognition using
active learning and svm. Multimedia Tools and Appli-
cations, 80.
Zhu, Q. and Luo, J. (2023). Toward artificial empathy for
human-centered design: A framework.
Facial Empathy Analysis Through Deep Learning and Computer Vision Techniques in Mixed Reality Environments
39