
Astrova, I., Koschel, A., Kobert, S., Naumann, J., Ruhe, T.,
& Starodubtsev, O. (2019). Evaluating RuleCore as
Event Processing Network Model. In Proc. 15th In-
ternational Conference on Web Information Systems
and Technologies (WEBIST 2019) (pp. 297–300). Vi-
enna, Austria: SCITEPRESS -– Science and Technol-
ogy Publications.
Bruns, R. & Dunkel, J. (2010). Event-Driven Archi-
tecture - Softwarearchitektur f
¨
ur ereignisgesteuerte
Gesch
¨
aftsprozesse (Software architecture for event-
driven business processes). Springer.
Chandramouli, B., Goldstein, J., Barnett, M., DeLine, R.,
Fisher, D., Platt, J. C., Terwilliger, J. F., & Werns-
ing, J. (2014). Trill: A high-performance incremental
query processor for diverse analytics. Proceedings of
the VLDB Endowment, 8(4), 401–412.
Chandramouli, B., Goldstein, J., Barnett, M., & Terwilliger,
J. F. (2015). Trill: Engineering a library for diverse
analytics. IEEE Data Eng. Bull., 38(4), 51–60.
Dunkel, J. & Bruns, R. (2015). Complex Event Processing
- Komplexe Analyse von massiven Datenstr
¨
omen mit
CEP (Complex analysis of massive data streams with
CEP). Springer Vieweg.
Koschel, A., Astrova, I., Kobert, S., Naumann, J., Ruhe, T.,
& Starodubtsev, O. (2017). Towards Requirements for
Event Processing Network Models. In Proc. 8th In-
ternational Conference on Information, Intelligence,
Systems, Applications (IISA 2017) (pp. 27–30). Lar-
naca, Cyprus: IEEE.
Koschel, A., Astrova, I., Kobert, S., Naumann, J., Ruhe,
T., & Starodubtsev, O. (2018). On Requirements
for Event Processing Network Models Using Business
Event Modeling Notation. In Proc. 2018 Conf. Intelli-
gent Computing. Advances in Intelligent Systems and
Computing (SAI 2018) (pp. 756–762). London, UK:
Springer.
Koschel, A., Astrova, I., Pakosch, A., Gerner, C., Schulze,
C., & Tyca, M. (2023). Is Amazon Kinesis Data Ana-
lytics Suitable as Core for an Event Processing Net-
work Model? In Proc. 16th International Confer-
ence on Agents and Artificial Intelligence (ICAART
2024) (pp. 1036–1043). Rome, Italy: INSTICC,
SCITEPRESS.
Luckham, D. (2002). The Power of Events. Addison Wes-
ley, USA.
Microsoft (2021a). Event Delivery Guarantees (Azure
Stream Analytics). Microsoft Documentation.
Online: https://docs.microsoft.com/en-us/stream-
analytics-query/event-delivery-guarantees-azure-
stream-analytics [retrieved: 09, 2024].
Microsoft (2021b). Introduction to Azure Stream
Analytics. Microsoft Documentation. Online:
https://docs.microsoft.com/en-us/azure/stream-
analytics/stream-analytics-introduction [retrieved:
04, 2022].
Microsoft (2021c). Parse JSON and Avro data in Azure
Stream Analytics. Microsoft Documentation. On-
line: https://docs.microsoft.com/en-us/azure/stream-
analytics/stream-analytics-parsing-json [retrieved:
04, 2022].
Microsoft (2022). Windowfunctions (Azure Stream
Analytics). Microsoft Documentation. Online:
https://docs.microsoft.com/de-de/stream-analytics-
query/windowing-azure-stream-analytics [retrieved:
09, 2024].
Robertson, S. & Robertson, J. (2012). Mastering the
Requirements Process: Getting Requirements Right.
Addison-Wesley Professional.
Rupp, C. & Pohl, R. (2021). Basiswissen Requirements En-
gineering (Basic knowledge Requirements Engineer-
ing). dpunkt.verlag.
Schulze, C., Gerner, C., Tyca, M., Koschel, A., Pakosch,
A., & Astrova, I. (2023). Analyzing Apache Storm
as Core for an Event Processing Network Model.
In Proc. International Conference Intelligent Systems
(IntelliSys 2023), LNNS 824 (pp. 397–410). Amster-
dam, Netherlands: Springer, Cham.
Shaikh, T. (2019). Batch Processing — Hadoop Ecosys-
tem. K2 Data Science and Engineering. Online:
https://blog.k2datascience.com/batch-processing-
hadoop-ecosystem-f6da88f11cae [retrieved: 04,
2022].
Terwilliger, J. (2018). Microsoft open sources
Trill to deliver insights on a trillion events
a day. Micro-soft Blog Developer. Online:
https://azure.microsoft.com/de-de/blog/microsoft-
open-sources-trill-to-deliver-insights-on-a-trillion-
events-a-day/ [retrieved: 09, 2024].
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
22