
(2021). Evaluating Large Language Models Trained
on Code. ArXiv.
Dibia, V. (2023). LIDA: A Tool for Automatic Generation
of Grammar agnostic Visualizations and Infographics
using Large Language Models. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), 2023, pages 113 – 126.
Dibia, V. and Demiralp, C. (2019). Data2Vis: Automatic
Generation of Data Visualizations Using Sequence-
to-Sequence Recurrent Neural Networks. IEEE Com-
puter Graphics and Applications, 39(5):33–46.
Guan, T., Liu, F., Wu, X., Xian, R., Li, Z., et al. (2024). Hal-
lusionBench: An Advanced Diagnostic Suite for En-
tangled Language Hallucination and Visual Illusion in
Large Vision-Language Models. In Computer Vision
and Pattern Recognition (CVPR 2024).
Kahou, S. E., Michalski, V., Atkinson, A., Kadar, A.,
Trischler, A., and Bengio, Y. (2018). FigureQA:
An Annotated Figure Dataset for Visual Reasoning.
ArXiv.
Li, G., Wang, X., Aodeng, G., Zheng, S., Zhang, Y., Ou, C.,
Wang, S., and Liu, C. H. (2024). Visualization Gen-
eration with Large Language Models: An Evaluation.
ArXiv.
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neu-
big, G. (2023). Pre-train, Prompt, and Predict: A Sys-
tematic Survey of Prompting Methods in Natural Lan-
guage Processing. ACM Computing Surveys, 55(9):1–
35.
Luo, Y., Tang, N., Li, G., Tang, J., Chai, C., and Qin, X.
(2022). Natural Language to Visualization by Neural
Machine Translation. IEEE Transactions on Visual-
ization and Computer Graphics, 28(1):217–226.
Maddigan, P. and Susnjak, T. (2023). Chat2Vis: Generating
Data visualizations via Natural Language using Chat-
gpt, Codex and GPT-3 Large Language Models. IEEE
Access, 11.
Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R.,
Bethard, S., and McClosky, D. (2014). The Stanford
CoreNLP Natural Language Processing Toolkit. In
Proceedings of 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (2014): System
Demonstrations, pages 55–60.
Masry, A., Do, X. L., Tan, J. Q., Joty, S., and Hoque, E.
(2022). ChartQA: A Benchmark for Question An-
swering about Charts with Visual and Logical Reason-
ing. In Findings of the Association for Computational
Linguistics: ACL 2022, Dublin, Ireland.
Meng, F., Shao, W., Lu, Q., Gao, P., Zhang, K., Qiao,
Y., and Luo, P. (2024). ChartAssisstant: A Univer-
sal Chart Multimodal Language Model via Chart-to-
Table Pre-training and Multitask Instruction Tuning.
In Findings of the Association for Computational Lin-
guistics: ACL 2024.
Narechania, A., Srinivasan, A., and Stasko, J. T. (2021).
NL4DV: A Toolkit for Generating Analytic Specifica-
tions for Data Visualization from Natural Language
Queries. IEEE Transactions on Visualization and
Computer Graphics, 27(2).
Shen, L., Shen, E., Luo, Y., Yang, X., Hu, X., Zhang,
X., Tai, Z., and Wang, J. (2023). Towards Natural
Language Interfaces for Data Visualization: A Sur-
vey. IEEE Transactions on Visualization and Com-
puter Graphics, 29(6):3121–3144.
V
´
azquez, P.-P. (2024). Are LLMs ready for Visualization?
In IEEE PacificVis 2024 Workshop - Vis Meets AI,
pages 343–352.
Wang, Y., Sun, Z., Zhang, H., Cui, W., Xu, K., Ma, X., and
Zhang, D. (2020). DataShot: Automatic Generation of
Fact Sheets from Tabular Data. IEEE Transactions on
Visualization & Computer Graphics, 26(1):895–905.
Wei, J., Wang, X., Schuurmans, D., Bosma, M., hsin Chi,
E. H., Xia, F., Le, Q., and Zhou, D. (2022). Chain of
Thought Prompting Elicits Reasoning in Large Lan-
guage Models. Neural Information Processing Sys-
tems.
Wu, A., Wang, Y., Shu, X., Moritz, D., Cui, W., Zhang, H.,
Zhang, D., and Qu, H. (2022). AI4VIS: Survey on
Artificial Intelligence Approaches for Data Visualiza-
tion. IEEE Transactions on Visualization and Com-
puter Graphics, 28(12):5049–5070.
Xiao, S., Huang, S., Lin, Y., Ye, Y., and Zeng, W.
(2024). Let the Chart Spark: Embedding Seman-
tic Context into Chart with Text-to-Image Generative
Model. IEEE Transactions on Visualization & Com-
puter Graphics, 30(1):284–294.
Ye, J., Hu, A., Xu, H., Ye, Q., Yan, M., et al. (2023).
UReader: Universal OCR-free Visually-situated Lan-
guage Understanding with Multimodal Large Lan-
guage Model. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023.
IVAPP 2025 - 16th International Conference on Information Visualization Theory and Applications
798