neural activity in the IC. Lower frequencies (e.g., 4
kHz) tend to evoke neural activity in shallow laminae
in the mouse IC (Sato et al., 2024), which is consistent
with the frequency characteristic of our observed
ERPs (Figs. 4Ca, 4b).
In future applications, we plan to test this device
in closed-loop TUS as a treatment method for brain
diseases. In line with this purpose, the oscillatory
power of specific frequencies is utilized as a reliable
EEG biomarker. Further, EEG biomarkers play a
pivotal role in diagnosing and understanding
neurological disorders, including epilepsy
(Buchhalter et al., 2022; Saeedinia et al., 2024),
Alzheimer’s disease (Chetty et al., 2024; Meghdadi et
al., 2021), and psychiatric disorders (Abi-Dargham &
Horga, 2016). In future applications of our device,
EEG biomarkers could provide PMUT device uses
with invaluable data for early detection and
intervention by capturing aberrations in brain activity
characteristics.
ACKNOWLEDGEMENTS
R.F. was supported by Grant-in-Aid for JSPS Fellows
[grant number JP23KJ0047]. T.T. was supported by
supported by the Murata Science Foundation, the
Suzuken Memorial Foundation, the Nakatani
Foundation for Advancement of Measuring
Technologies in Biomedical Engineering, a Grant-in-
Aid for Exploratory Research [grant number
21K19755], and a Grant-in-Aid for Scientific
Research (B) [grant number 23H03416] (Japan). The
authors appreciate Mr. Kawakatsu for his kind advice
and support.
REFERENCES
Abi-Dargham, A., & Horga, G. (2016). The search for
imaging biomarkers in psychiatric disorders. Nature
Medicine, 22(11), 1248–1255. https://doi.org/10.
1038/nm.4190
Buchhalter, J., Neuray, C., Cheng, J. Y., D’Cruz, O., Datta,
A. N., Dlugos, D., French, J., Haubenberger, D.,
Hulihan, J., Klein, P., Komorowski, R. W., Kramer, L.,
Lothe, A., Nabbout, R., Perucca, E., & der Ark, P. V.
(2022). EEG parameters as endpoints in epilepsy
clinical trials—An expert panel opinion paper. Epilepsy
Research, 187, 107028. https://doi.org/10.
1016/j.eplepsyres.2022.107028
Chetty, C. A., Bhardwaj, H., Kumar, G. P., Devanand, T.,
Sekhar, C. S. A., Aktürk, T., Kiyi, I., Yener, G.,
Güntekin, B., Joseph, J., & Adaikkan, C. (2024). EEG
biomarkers in Alzheimer’s and prodromal Alzheimer’s:
A comprehensive analysis of spectral and connectivity
features. Alzheimer’s Research & Therapy, 16(1), 236.
https://doi.org/10.1186/s13195-024-01582-w
Davidson, B., Bhattacharya, A., Sarica, C., Darmani, G.,
Raies, N., Chen, R., & Lozano, A. M. (2024).
Neuromodulation techniques – From non-invasive
brain stimulation to deep brain stimulation.
Neurotherapeutics, 21(3), e00330. https://doi.
org/10.1016/j.neurot.2024.e00330
Furukawa, R., Kaneta, H., & Tateno, T. (2022). A
Multielectrode Array-Based Recording System for
Analyzing Ultrasound-Driven Neural Responses in
Brain Slices in vitro. Frontiers in Neuroscience, 16.
https://www.frontiersin.org/articles/10.3389/fnins.202
2.824142
Furukawa, R., Yoshikawa, T., Murakami, S., & Tateno, T.
(2024). A piezoelectric micromachined ultrasound
transducer combined with recording electrodes for
acute brain preparations in vitro. Journal of
Neuroscience Methods, 403, 110048.
https://doi.org/10.1016/j.jneumeth.2023.110048
Jo, Y., Lee, S.-M., Jung, T., Park, G., Lee, C., Im, G. H.,
Lee, S., Park, J. S., Oh, C., Kook, G., Kim, H., Kim, S.,
Lee, B. C., Suh, G. S. B., Kim, S.-G., Kim, J., & Lee,
H. J. (2022). General-Purpose Ultrasound
Neuromodulation System for Chronic, Closed-Loop
Preclinical Studies in Freely Behaving Rodents.
Advanced Science, 9(34), 2202345. https://doi.org/10.
1002/advs.202202345
Jo, Y., Oh, C., & Lee, H. J. (2019). Microelectromechanical
Systems-Based Neurotools for Non-Invasive
Ultrasound Brain Stimulation. Chronobiology in
Medicine, 1(2), 55–59. https://doi.org/10.
33069/cim.2019.0009
Kim, E., Anguluan, E., Kum, J., Sanchez-Casanova, J.,
Park, T. Y., Kim, J. G., & Kim, H. (2021). Wearable
transcranial ultrasound system for remote stimulation
of freely moving animal. IEEE Transactions on
Biomedical Engineering, 68(7), 2195–2202.
https://doi.org/10.1109/TBME.2020.3038018
Kim, H., Kim, S., Sim, N. S., Pasquinelli, C., Thielscher,
A., Lee, J. H., & Lee, H. J. (2019). Miniature ultrasound
ring array transducers for transcranial ultrasound
neuromodulation of freely-moving small animals.
Brain Stimulation, 12(2), 251–255. https://doi.org/10.
1016/j.brs.2018.11.007
Kuwano, T., Kaneta, H., Nishikawa, J., Satoh, K.,
Murakami, S., & Tateno, T. (2020). Developing a
Frequency-selective Piezoelectric Acoustic Sensor
Sensitive to the Audible Frequency Range of Rodents.
IEEJ Transactions on Electrical and Electronic
Engineering, 15(12), 1816–1823. https://doi.org/10.
1002/tee.23260
Lee, J., Ko, K., Shin, H., Oh, S.-J., Lee, C. J., Chou, N.,
Choi, N., Tack Oh, M., Chul Lee, B., Chan Jun, S., &
Cho, I.-J. (2019). A MEMS ultrasound stimulation
system for modulation of neural circuits with high
spatial resolution in vitro. Microsystems &
Nanoengineering, 5(1), Article 1. https://doi.org/10.
1038/s41378-019-0070-5