
In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18.
AAAI Press.
Chen, T., Wang, X., Yue, T., Bai, X., Le, C. X., and Wang,
W. (2023). Enhancing abstractive summarization with
extracted knowledge graphs and multi-source trans-
formers. Applied Sciences, 13(13):7753.
Chen, W., Su, Y., Yan, X., and Wang, W. Y. (2020).
Kgpt: Knowledge-grounded pre-training for data-to-
text generation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 8635–8648.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186.
Dinan, E., Logacheva, V., Malykh, V., Miller, A. H., Shus-
ter, K., Urbanek, J., Kiela, D., Szlam, A., Serban, I. V.,
Lowe, R., Prabhumoye, S., Black, A. W., Rudnicky,
A. I., Williams, J. D., Pineau, J., Burtsev, M., and
Weston, J. (2019a). The second conversational intel-
ligence challenge (convai2). The Springer Series on
Challenges in Machine Learning, pages 187–208.
Dinan, E., Roller, S., Shuster, K., Fan, A., Auli, M., and
Weston, J. (2019b). Wizard of wikipedia: Knowledge-
powered conversational agents. In International Con-
ference on Learning Representations.
Durmus, E., He, H., and Diab, M. (2020). FEQA: A ques-
tion answering evaluation framework for faithfulness
assessment in abstractive summarization. In Jurafsky,
D., Chai, J., Schluter, N., and Tetreault, J., editors,
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 5055–
5070. Association for Computational Linguistics.
Dziri, N., Kamalloo, E., Mathewson, K., and Zaiane, O.
(2019). Evaluating coherence in dialogue systems us-
ing entailment. In Burstein, J., Doran, C., and Solorio,
T., editors, Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 3806–
3812. Association for Computational Linguistics.
Dziri, N., Madotto, A., Za
¨
ıane, O., and Bose, A. J. (2021).
Neural path hunter: Reducing hallucination in dia-
logue systems via path grounding. In Moens, M.-F.,
Huang, X., Specia, L., and Yih, S. W.-t., editors, Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2197–
2214. Association for Computational Linguistics.
Edunov, S., Ott, M., Auli, M., and Grangier, D. (2018). Un-
derstanding back-translation at scale. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 489–500.
Falke, T., Ribeiro, L. F., Utama, P. A., Dagan, I., and
Gurevych, I. (2019). Ranking generated summaries
by correctness: An interesting but challenging appli-
cation for natural language inference. In Proceedings
of the 57th annual meeting of the association for com-
putational linguistics, pages 2214–2220.
Fan, A., Gardent, C., Braud, C., and Bordes, A. (2019).
Using local knowledge graph construction to scale
Seq2Seq models to multi-document inputs. In Inui,
K., Jiang, J., Ng, V., and Wan, X., editors, Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4186–4196, Hong
Kong, China. Association for Computational Linguis-
tics.
Feng, Y., Xie, W., Gu, S., Shao, C., Zhang, W., Yang, Z.,
and Yu, D. (2020). Modeling fluency and faithfulness
for diverse neural machine translation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 59–66.
Filippova, K. (2020). Controlled hallucinations: Learning
to generate faithfully from noisy data. arXiv preprint
arXiv:2010.05873.
Gunel, B., Zhu, C., Zeng, M., and Huang, X. (2020).
Mind the facts: Knowledge-boosted coherent abstrac-
tive text summarization. ArXiv, abs/2006.15435.
Hancock, B., Bordes, A., Mazare, P.-E., and Weston, J.
(2019). Learning from dialogue after deployment:
Feed yourself, chatbot! In Korhonen, A., Traum,
D., and M
`
arquez, L., editors, Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3667–3684. Association for Com-
putational Linguistics.
He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T.-Y., and
Ma, W.-Y. (2016). Dual learning for machine transla-
tion. Advances in neural information processing sys-
tems, 29.
He, Q., Wu, L., Yin, Y., and Cai, H. (2020). Knowledge-
graph augmented word representations for named en-
tity recognition. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
7919–7926.
He, T., Zhang, J., Zhou, Z., and Glass, J. (2021). Exposure
bias versus self-recovery: Are distortions really incre-
mental for autoregressive text generation? In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5087–
5102. Association for Computational Linguistics.
Honovich, O., Aharoni, R., Herzig, J., Taitelbaum, H., Kuk-
liansy, D., Cohen, V., Scialom, T., Szpektor, I., Has-
sidim, A., and Matias, Y. (2022). True: Re-evaluating
factual consistency evaluation. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3905–3920.
Hu, W., He, L., Ma, H., Wang, K., and Xiao, J. (2022).
Kgner: Improving chinese named entity recognition
by bert infused with the knowledge graph. Applied
Sciences, 12(15):7702.
Huang, L., Wu, L., and Wang, L. (2020). Knowledge graph-
augmented abstractive summarization with semantic-
driven cloze reward. In Jurafsky, D., Chai, J., Schluter,
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
112