
ence on Agents and Artificial Intelligence, volume 2,
pages 129–136. SCITEPRESS.
Bremer, J. and Lehnhoff, S. (2017b). Decentralized sur-
plus distribution estimation with weighted k-majority
voting games. In Highlights of Practical Applications
of Cyber-Physical Multi-Agent Systems: International
Workshops of PAAMS 2017, Porto, Portugal, June 21-
23, 2017, Proceedings 15, pages 327–339. Springer.
Bremer, J. and Lehnhoff, S. (2017c). Enhancing Support
Vector Decoders by Integrating an Uncertainty Model,
pages 114–132. Springer International Publishing,
Cham.
Bremer, J. and Lehnhoff, S. (2020a). Controlled self-
organization for steering local multi-objective opti-
mization in virtual power plants. In Highlights in
Practical Applications of Agents, Multi-Agent Sys-
tems, and Trust-worthiness. The PAAMS Collection:
International Workshops of PAAMS 2020, L’Aquila,
Italy, October 7–9, 2020, Proceedings 18, pages 314–
325. Springer.
Bremer, J. and Lehnhoff, S. (2020b). Encrypted decentral-
ized optimization for data masking in energy schedul-
ing. In Proceedings of the 3rd International Confer-
ence on Big Data Research, ICBDR ’19, pages 103–
109, New York, NY, USA. Association for Computing
Machinery.
Bremer, J. and Lehnhoff, S. (2022). Information disclosure
in vpp-information disclosure by decentralized coor-
dination in virtual power plants and district energy
systems.
Bremer, J. and Sonnenschein, M. (2013). Constraint-
handling for optimization with support vector surro-
gate models - a novel decoder approach. In Inter-
national Conference on Agents and Artificial Intelli-
gence, volume 2, pages 91–100. SciTePress.
Buhl, H., Dombrowski, T., Hogen, E., Kreutz, M., Palm, D.,
Stark, S., Stubbe, P., Warsch, S., Bremer, J., Lehnhoff,
S., et al. (2017). Ein algorithmus f
¨
ur den wiederaufbau
eines smart grid nach einem blackout.
Catalano, D., Cramer, R., Di Crescenzo, G., Darmg
˚
ard, I.,
Pointcheval, D., Takagi, T., Cramer, R., and Damg
˚
ard,
I. (2005). Multiparty computation, an introduction.
Contemporary cryptology, pages 41–87.
Chandramohan, D., Sathian, D., Rajaguru, D., Vengattara-
man, T., and Dhavachelvan, P. (2015). A multi-agent
approach: To preserve user information privacy for a
pervasive and ubiquitous environment. Egyptian In-
formatics Journal, 16(1):151–166.
Chaum, D., Cr
´
epeau, C., and Damgard, I. (1988). Multi-
party unconditionally secure protocols. In Proceed-
ings of the twentieth annual ACM symposium on The-
ory of computing, pages 11–19.
Dabrock, K. (2018). Privacy in der automatisierten
pr
¨
adiktiven Einsatzplanung von Energieanlagen im
Smart Grid. Master’s thesis, University of Oldenburg,
Dept. of Energy Informatics, Germany.
Dawson, E. and Donovan, D. (1994). The breadth of
shamir’s secret-sharing scheme. Computers & Secu-
rity, 13(1):69–78.
Desmedt, Y. and Frankel, Y. (1991). Shared generation of
authenticators and signatures. In Annual International
Cryptology Conference, pages 457–469. Springer.
Finster, S. and Baumgart, I. (2015). Privacy-aware smart
metering: A survey. IEEE communications surveys &
tutorials, 17(2):1088–1101.
Fiore, D. and Russo, G. (2019). Resilient consensus for
multi-agent systems subject to differential privacy re-
quirements. Automatica, 106:18–26.
Gentry, C. (2009). A fully homomorphic encryption scheme.
Stanford university.
Gordon, S. D. and Katz, J. (2006). Rational secret shar-
ing, revisited. In Security and Cryptography for
Networks: 5th International Conference, SCN 2006,
Maiori, Italy, September 6-8, 2006. Proceedings 5,
pages 229–241. Springer.
Guo, Y., Cao, Z.-F., and Dong, X.-L. (2022). Generalized
goldwasser and micali’s type cryptosystem. Journal
of Computer Science and Technology, 37(2):459–467.
Han, W. and Xiao, Y. (2016). Privacy preservation for v2g
networks in smart grid: A survey. Computer Commu-
nications, 91:17–28.
Hinrichs, C. and Sonnenschein, M. (2014). The Effects
of Variation on Solving a Combinatorial Optimiza-
tion Problem in Collaborative Multi-Agent Systems.
In Mueller, J. P., Weyrich, M., and Bazzan, A. L., edi-
tors, Multiagent System Technologies, volume 8732 of
Lecture Notes in Computer Science, pages 170–187.
Springer International Publishing.
Hinrichs, C. and Sonnenschein, M. (2017). A distributed
combinatorial optimisation heuristic for the schedul-
ing of energy resources represented by self-interested
agents. International Journal of Bio-Inspired Compu-
tation, 10(2):69–78.
Hinrichs, C., Sonnenschein, M., and Lehnhoff, S. (2013).
Evaluation of a Self-Organizing Heuristic for Inter-
dependent Distributed Search Spaces. In Filipe, J.
and Fred, A. L. N., editors, International Conference
on Agents and Artificial Intelligence (ICAART 2013),
volume Volume 1 – Agents, pages 25–34. SciTePress.
Huo, X. and Liu, M. (2021). Privacy-preserving distributed
multi-agent cooperative optimization – paradigm de-
sign and privacy analysis. IEEE Control Systems Let-
ters, 6:824–829.
Kang, J. (1997). Information privacy in cyberspace transac-
tions. Stan. L. Rev., 50:1193.
Kumar, P., Lin, Y., Bai, G., Paverd, A., Dong, J. S., and
Martin, A. (2019). Smart grid metering networks:
A survey on security, privacy and open research is-
sues. IEEE Communications Surveys & Tutorials,
21(3):2886–2927.
Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R., Fitzek,
F. H., and Aaraj, N. (2022). Survey on fully homomor-
phic encryption, theory, and applications. Proceedings
of the IEEE, 110(10):1572–1609.
Meftah, S., Tan, B. H. M., Aung, K. M. M., Yuxiao, L., Jie,
L., and Veeravalli, B. (2022). Towards high perfor-
mance homomorphic encryption for inference tasks
on cpu: An mpi approach. Future Generation Com-
puter Systems, 134:13–21.
Privacy-Preserving Self-Organization in Distributed Energy Scheduling
261