
sity, breast cancer risk and the importance of the cran-
iocaudal view. Breast cancer research : BCR, 10:R64.
Huynh, B. Q., Li, H., and Giger, M. L. (2016). Digital mam-
mographic tumor classification using transfer learning
from deep convolutional neural networks. Journal of
Medical Imaging, 3(3):034501.
Iacob, B. and Diosan, L. (2024). Exploring the fusion of
cnns and textural features in mammogram interpreta-
tion. International Conference on Knowledge-Based
and Intelligent Information & Engineering Systems.
Kaiming He, Xiangyu Zhang, S. R. and Sun, J. (2016).
Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778.
Kala, S. and Ezhilarasi, M. (2018). Fusion of k-gabor
features from medio-lateral-oblique and craniocaudal
view mammograms for improved breast cancer diag-
nosis. Journal of Cancer Research and Therapeutics,
14.
Kim SJ, Moon WK, C. N.-C. J. K. S. I. J. (2006). omputer-
aided detection in digital mammography: comparison
of craniocaudal, mediolateral oblique, and mediolat-
eral views. Radiology.
Mahmood, T., Li, J., Pei, Y., Akhtar, F., Rehman, M. U.,
and Wasti, S. H. (2022). Breast lesions classifica-
tions of mammographic images using a deep convo-
lutional neural network-based approach. PLOS ONE,
17(1):e0263126.
Melekoodappattu, J. G., Dhas, A. S., Kandathil, B. K., and
Adarsh, K. S. (2022). Breast cancer detection in mam-
mogram: combining modified cnn and texture feature
based approach. Journal of Ambient Intelligence and
Humanized Computing, 14(1):11397–11406.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
P
´
erez-Benito, F. J., Signol, F., P
´
erez-Cort
´
es, J.-C., Poll
´
an,
M., P
´
erez-G
´
omez, B., Salas-Trejo, D., Casals, M.,
Mart
´
ınez, I., and LLobet, R. (2019). Global parenchy-
mal texture features based on histograms of oriented
gradients improve cancer development risk estimation
from healthy breasts. Computer Methods and Pro-
grams in Biomedicine, 177:123–132.
Razali, N. F., Isa, I. S., Sulaiman, S. N., Karim, N. K. A.,
and Osman, M. K. (2023). Cnn-wavelet scattering
textural feature fusion for classifying breast tissue in
mammograms. Biomedical Signal Processing and
Control, 83:104683.
Rodriguez-Ruiz, A., L
˚
ang, K., Gubern-Merida, A., Broed-
ers, M., Gennaro, G., Clauser, P., Helbich, T. H.,
Chevalier, M., Tan, T., Mertelmeier, T., et al. (2019).
Stand-alone artificial intelligence for breast cancer de-
tection in mammography: comparison with 101 radi-
ologists. JNCI: Journal of the National Cancer Insti-
tute, 111(9):916–922.
Sasikala, S. and Arun Kumar, S. (2024). Enhancement of
breast cancer screening through texture and deep fea-
ture fusion model using mlo and cc view mammo-
grams. In Exploration of Artificial Intelligence and
Blockchain Technology in Smart and Secure Health-
care Advances in Computing Communications and In-
formatics, volume 7, page 96.
Sawyer-Lee, R., Gimenez, F., Hoogi, A., and Rubin,
D. (2017). Curated breast imaging subset of dig-
ital database for screening mammography (cbis-
ddsm). International Research and Innovation Sum-
mit (IRIS2017).
Singh, H., Sharma, V., and Singh, D. (2022). Compara-
tive analysis of proficiencies of various textures and
geometric features in breast mass classification using
k-nearest neighbor. Visual Computing for Industry,
Biomedicine, and Art, 5(1):3.
Siviengphanom, S., Gandomkar, Z., Lewis, S. J., and Bren-
nan, P. C. (2022). Mammography-based radiomics in
breast cancer: a scoping review of current knowledge
and future needs. Academic Radiology, 29(8):1228–
1247.
Tan, M., Zheng, B., Leader, J. K., and Gur, D. (2016).
Association between changes in mammographic im-
age features and risk for near-term breast cancer de-
velopment. IEEE Transactions on Medical Imaging,
35(7):1719–1728. Epub 2016 Feb 11.
Tourassi, G. D. (1999). Journey toward computer-aided di-
agnosis: role of image texture analysis. Radiology,
213(2):317–320.
Vachon, C. M., Brandt, K. R., Ghosh, K., Scott, C. G., Mal-
oney, S. D., Carston, M. J., Pankratz, V. S., and Sell-
ers, T. A. (2007). Mammographic breast density as a
general marker of breast cancer risk. Cancer Epidemi-
ology Biomarkers & Prevention, 16(1):43–49.
van Griethuysen J. J. M., Fedorov A., P. C. H. A. A. N.
N. V. B.-T. R. G. H. F.-R. J. C. P. S. A. H. J. W. L.
(2017). Computational radiomics system to decode
the radiographic phenotype. Cancer Research, pages
e104–e107.
Van Timmeren, J. E., Cester, D., Tanadini-Lang, S., Alka-
dhi, H., and Baessler, B. (2020). Radiomics in med-
ical imaging—“how-to” guide and critical reflection.
Insights into imaging, 11(1):91.
Wang, L. (2024). Mammography with deep learning for
breast cancer detection. Frontiers in Oncology, 14.
Zuiderveld, K. (1994). Contrast limited adaptive histogram
equalization. Graphics gems, 4:474–485.
Explaining Mammographic Texture: The Role of View and Abnormality Type in Early Cancer Diagnosis
131