Conference on Computer Vision and Pattern Recog-
nition, CVPR 2010, San Francisco, CA, USA, 13-18
June 2010, pages 3352–3359. IEEE Computer Soci-
ety.
Chaplot, D. S., Parisotto, E., and Salakhutdinov, R. (2018).
Active neural localization. In 6th International Con-
ference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net.
Chaplot, D. S., Salakhutdinov, R., Gupta, A., and Gupta, S.
(2020). Neural topological slam for visual navigation.
In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 12875–
12884.
Cormack, G. V., Clarke, C. L. A., and B¨uttcher, S. (2009).
Reciprocal rank fusion outperforms condor cet and in-
dividual rank learning methods. In A llan, J., Aslam,
J. A., Sanderson, M., Zhai, C., and Zobel, J., editors,
Proceedings of the 32nd Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 2009, Boston, MA, USA,
July 19-23, 2009, pages 758–759. ACM.
Cummins, M. J. and Newman, P. M. (2008). FAB-MAP:
probabilistic localization and mapping in the space of
appearance. Int. J. Robotics Res., 27(6):647–665.
Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1999).
Monte carlo localization for mobile robots. In 1999
IEEE International Conference on Robotics and Au-
tomation, Marriott Hotel, Renaissance Center, De-
troit, Michigan, USA, May 10-15, 1999, Proceed-
ings, pages 1322–1328. IEEE R obotics and Automa-
tion S ociety.
Gawel, A., Don, C. D., Siegwart, R., Nieto, J. I., and
Cadena, C. (2018). X-view: Graph-based semantic
multiview localization. IEEE Robotics Autom. Lett.,
3(3):1687–1694.
Guo, X., Hu, J., Chen, J., Deng, F., and Lam, T. L. (2021a).
Semantic histogram based graph matching for real-
time multi-robot global localization in large scale en-
vironment. IEEE Robotics Autom. Lett., 6(4):8349–
8356.
Guo, X., Hu, J., Chen, J., Deng, F., and Lam, T. L. (2021b).
Semantic histogram based graph matching for real-
time multi-robot global localization in large scale en-
vironment. IEEE Robotics Autom. Lett., 6(4):8349–
8356.
Islam, M. M., Yao, X., and Murase, K. (2003). A construc-
tive algorithm for t raining cooperative neural network
ensembles. IEEE Transactions on neural networks,
14(4):820–834.
Kim, G., Park, B., and Kim, A. (2019). 1-day learning,
1-year localization: Long-term lidar localization us-
ing scan context image. IEEE Robotics Autom. Lett.,
4(2):1948–1955.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Bartlett, P. L., Pereira, F. C. N ., Burges,
C. J. C., Bottou, L., and Weinberger, K. Q., edi-
tors, Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Informa-
tion Processing Systems 2012. Proceedings of a meet-
ing held December 3-6, 2012, Lake Tahoe, Nevada,
United States, pages 1106–1114.
Leonard, J. J. and Durrant-Whyte, H. F. (1991). Mo-
bile robot localization by tracking geometric beacons.
IEEE Trans. Robotics Autom., 7(3):376–382.
Li, Y. and Olson, E. B. (2012). IPJC: the incremental pos-
terior joint compatibility test for fast feature cloud
matching. In 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS 2012,
Vilamoura, Algarve, Portugal, October 7-12, 2012,
pages 3467–3474. IEEE.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proceedings of the International
Conference on Computer Vision, Kerkyra, Corfu,
Greece, September 20-25, 1999, pages 1150–1157.
IEEE Computer Society.
Lowry, S., S¨underhauf, N. , Newman, P., Leonard, J. J., Cox,
D., Corke, P., and Milf ord, M. J. (2015). Visual place
recognition: A survey. ieee transactions on robotics,
32(1):1–19.
Lui, W. L. D. and Jarvis, R. A. (2010). A pure vision-based
approach to topological SLAM. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, October 18-22, 2010, Taipei, Taiwan, pages
3784–3791. IEEE.
Mikolajczyk, K., Tuytelaars, T., Schmid, C. , Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. V.
(2005). A comparison of affine region detectors. Int.
J. Comput. Vis., 65(1-2):43–72.
Neira, J. and Tard´os, J. D. (2001). Data association in
stochastic mapping using the joint compatibility test.
IEEE Trans. Robotics Autom., 17(6):890–897.
N¨uchter, A. and Hertzberg, J. (2008). Towards seman-
tic maps for mobile robots. Robotics Auton. Syst.,
56(11):915–926.
Ranganathan, A. and Dellaert, F. (2008). Automatic
landmark detection for topological mapping using
bayesian surprise. Technical report, Georgia Institute
of Technology.
Sch¨onberger, J. L ., Pollefeys, M., Geiger, A., and Sattl er, T.
(2018). Semantic visual localization. In 2018 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pages 6896–6906. Computer Vision Foun-
dation / IEEE Computer Society.
Shah, D. and Xie, Q. (2018). Q-learning with nearest neigh-
bors. I n Bengio, S., Wallach, H. M., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and G arnett, R., edi-
tors, Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montr´eal, Canada, pages 3115–3125.
Sivic, J. and Zisserman, A. (2003). Video google: A text
retrieval approach to object matching in videos. In
9th IEEE International Conference on Computer Vi-
sion (ICCV 2003), 14-17 October 2003, Nice, France,
pages 1470–1477. IEEE Computer Society.
Stankiewicz, B. J. and Kalia, A. A. (2007). Acquistion of
structural versus object landmark knowledge. Journal