
International Conference on Autonomous Agents and
Multiagent Systems, pages 6110–6118.
Berreby, F., Bourgne, G., and Ganascia, J.-G. (2018).
Event-based and scenario-based causality for compu-
tational ethics. In International Conference on Au-
tonomous Agents and Multiagent Systems, pages 147–
155.
Bonatti, P. A., Kirrane, S., Petrova, I. M., and Sauro, L.
(2020). Machine understandable policies and GDPR
compliance checking. KI - K
¨
unstliche Intelligenz,
34(3):303–315.
Chesani, F. et al. (2018). Compliance in business pro-
cesses with incomplete information and time con-
straints: a general framework based on abductive rea-
soning. Fundamenta Informaticae, 161(1-2):75–111.
Contissa, G. et al. (2018). Claudette meets GDPR:
Automating the evaluation of privacy policies us-
ing artificial intelligence. https:// ssrn.com/abstract=
3208596.
European Commission (2016). Regulation (EU) 2016/679
of the European Parliament and of the Council.
Governatori, G. et al. (2011). Designing for compliance:
Norms and goals. In International Joint Conference
on Rules and Reasoning, page 282–297.
Hayashi, H., Mitsikas, T., Taheri, Y., Tsushima, K.,
Sch
¨
afermeier, R., Bourgne, G., Ganascia, J., Paschke,
A., and Satoh, K. (2023). Multi-agent online plan-
ning architecture for real-time compliance. In Inter-
national Rule Challenge, International Joint Confer-
ence on Rules and Reasoning, volume 3485 of CEUR
Workshop Proceedings.
Hayashi, H. and Satoh, K. (2022). Towards legally and eth-
ically correct online HTN planning for data transfer.
In International Workshop on Non-Monotonic Rea-
soning, Federated Logic Conference, volume 3197 of
CEUR Workshop Proceedings, pages 4–15.
Hayashi, H. and Satoh, K. (2023). Online HTN planning
for data transfer and utilization considering legal and
ethical norms: Case study. In International Confer-
ence on Agents and Artificial Intelligence, volume 1,
pages 154–164.
Hayashi, H., Taheri, Y., Tsushima, K., Bourgne, G.,
Ganascia, J., and Satoh, K. (2024). Toward smooth
integration of an online HTN planning agent with le-
gal and ethical checkers. In AICOM track of the In-
ternational Workshop on AI Value Engineering and AI
Compliance Mechanisms (VECOMP), European Con-
ference on Artificial Intelligence (ECAI), pages 1–6.
Hayashi, H., Tokura, S., Hasegawa, T., and Ozaki, F.
(2006). Dynagent: An incremental forward-chaining
HTN planning agent in dynamic domains. In Bal-
doni, M., Endriss, U., Omicini, A., and Torroni, P.,
editors, Declarative Agent Languages and Technolo-
gies III, pages 171–187. Springer.
Lindner, F., Mattm
¨
uller, R., and Nebel, B. (2020). Evalua-
tion of the moral permissibility of action plans. Artifi-
cial Intelligence, 287(103350).
Magnaguagno, M. C., Meneguzzi, F., and Silva, L. (2021).
HyperTensioN: A three-stage compiler for planning.
In International Planning Competition: Planner and
Domain Abstracts – Hierarchical Task Network Plan-
ning Track, pages 5–8.
Merigoux, D., Chataing, N., and Protzenko, J. (2021).
Catala: a programming language for the law. Proc.
ACM Program. Lang., 5(ICFP).
Nau, D., Cao, Y., Lotem, A., and Munoz-Avila, H. (1999).
SHOP: Simple hierarchical ordered planner. In In-
ternational Joint Conference on Artificial Intelligence,
volume 2, page 968–973.
Pacuit, E. (2024). Voting Methods. In Zalta, E. N. and
Nodelman, U., editors, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford
University, Summer 2024 edition.
Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., and
Robaldo, L. (2018). Legal ontology for modelling
GDPR concepts and norms. Legal Knowledge and In-
formation Systems, pages 91–100.
Patra, S., Ghallab, M., Nau, D., and Traverso, P. (2019).
Acting and planning using operational models. In
AAAI Conference on Artificial Intelligence, pages
7691–7698.
Patra, S., Mason, J., Kumar, A., Ghallab, M., Traverso, P.,
and Nau, D. (2020). Integrating acting, planning, and
learning in hierarchical operational models. In In-
ternational Conference on Automated Planning and
Scheduling, pages 478–487.
Satoh, K. and et. al. (2011). Proleg: An implementation
of the presupposed ultimate fact theory of Japanese
civil code by prolog technology. In New Frontiers in
Artificial Intelligence, pages 153–164. Springer.
Schreiber, D. (2021). Lilotane: A lifted sat-based approach
to hierarchical planning. Journal of Artificial Intelli-
gence Research, 70:1117–1181.
Taheri, Y., Bourgne, G., and Ganascia, J.-G. (2023a). A
compliance mechanism for planning in privacy do-
main using policies. In Yada, K., Takama, Y., Mi-
neshima, K., and Satoh, K., editors, New Frontiers in
Artificial Intelligence, pages 77–92. Springer Nature.
Taheri, Y., Bourgne, G., and Ganascia, J.-G. (2023b). Mod-
elling integration of responsible ai values for ethical
decision making. In Workshop on Computational Ma-
chine Ethics, International Conference on Principles
of Knowledge Representation and Reasoning.
van Riemsdijk, M. B. et al. (2013). Agent reasoning for
norm compliance: a semantic approach. In Interna-
tional Conference on Autonomous Agents and Multia-
gent Systems, pages 499–506.
Vos, M. D., Kirrane, S., Padget, J., and Satoh, K. (2019).
ODRL policy modelling and compliance checking. In
International Joint Conference on Rules and Reason-
ing, pages 36–51.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
272