
REFERENCES
Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S.
(2009). Frequency-tuned salient region detection. In
2009 IEEE Conference On Computer Vision And Pat-
tern Recognition, pages 1597–1604.
Ba, J. and Frey, B. (2013). Adaptive dropout for training
deep neural networks. In Advances In Neural Infor-
mation Processing Systems, volume 26.
Chen, P., Liu, S., Zhao, H., and Jia, J. (2020). Gridmask data
augmentation. ArXiv Preprint ArXiv:2001.04086.
Cubuk, E., Zoph, B., Shlens, J., and Le, Q. (2020). Ran-
daugment: Practical automated data augmentation
with a reduced search space. In Proceedings Of The
IEEE/CVF Conference On Computer Vision And Pat-
tern Recognition Workshops, pages 702–703.
Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical im-
age database. In 2009 IEEE Conference On Computer
Vision And Pattern Recognition, pages 248–255.
Deng, Z., Hu, X., Zhu, L., Xu, X., Qin, J., Han, G., and
Heng, P. (2018). R3net: Recurrent residual refinement
network for saliency detection. In Proceedings Of The
27th International Joint Conference On Artificial In-
telligence, pages 684–690.
DeVries, T. and Taylor, G. (2017). Improved regularization
of convolutional neural networks with cutout. ArXiv
Preprint ArXiv:1708.04552.
Gastaldi, X. (2017). Shake-shake regularization. ArXiv
Preprint ArXiv:1705.07485.
Hataya, R., Zdenek, J., Yoshizoe, K., and Nakayama, H.
(2020). Faster autoaugment: Learning augmentation
strategies using backpropagation. In Computer Vi-
sion–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part
XXV, pages 1–16.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings Of
The IEEE Conference On Computer Vision And Pat-
tern Recognition, pages 770–778.
Hou, X. and Zhang, L. (2007). Saliency detection: A spec-
tral residual approach. In 2007 IEEE Conference On
Computer Vision And Pattern Recognition, pages 1–8.
Krizhevsky, A., Hinton, G., and Others. Learning multiple
layers of features from tiny images. (Toronto, ON,
Canada,2009).
Krizhevsky, A., Sutskever, I., and Hinton, G. (2017). Im-
agenet classification with deep convolutional neural
networks. Communications Of The ACM, 60:84–90.
Kumar, T., Mileo, A., Brennan, R., and Bendechache, M.
(2023a). Image data augmentation approaches: A
comprehensive survey and future directions. arXiv
preprint arXiv:2301.02830.
Kumar, T., Mileo, A., Brennan, R., and Bendechache, M.
(2023b). Rsmda: Random slices mixing data augmen-
tation. Applied Sciences, 13:1711.
Kumar Singh, K. and Jae Lee, Y. (2017). Hide-and-
seek: Forcing a network to be meticulous for weakly-
supervised object and action localization. In Proceed-
ings Of The IEEE International Conference On Com-
puter Vision, pages 3524–3533.
Montabone, S. and Soto, A. (2010). Human detection using
a mobile platform and novel features derived from a
visual saliency mechanism. Image And Vision Com-
puting, 28:391–402.
Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M.,
and Jagersand, M. (2019). Basnet: Boundary-aware
salient object detection. In Proceedings Of The
IEEE/CVF Conference On Computer Vision And Pat-
tern Recognition, pages 7479–7489.
Uddin, A., Monira, M., Shin, W., Chung, T., Bae, S., and
Others (2020). Saliencymix: A saliency guided data
augmentation strategy for better regularization. ArXiv
Preprint ArXiv:2006.01791.
Walawalkar, D., Shen, Z., Liu, Z., and Savvides, M. (2020).
Attentive cutmix: An enhanced data augmentation ap-
proach for deep learning based image classification. In
ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing-Proceedings.
Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R.
(2013). Regularization of neural networks using drop-
connect. In International Conference On Machine
Learning, pages 1058–1066.
Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
mnist: a novel image dataset for benchmark-
ing machine learning algorithms. ArXiv Preprint
ArXiv:1708.07747.
Yun, S., Han, D., Oh, S., Chun, S., Choe, J., and Yoo,
Y. (2019). Cutmix: Regularization strategy to train
strong classifiers with localizable features. In Pro-
ceedings Of The IEEE/CVF International Conference
On Computer Vision, pages 6023–6032.
Zagoruyko, S. and Komodakis, N. (2016). Wide residual
networks. In British Machine Vision Conference 2016.
Zhang, H., Cisse, M., Dauphin, Y., and Lopez-Paz, D.
(2017). Mixup: Beyond empirical risk minimization.
ICLR 2018. ArXiv Preprint ArXiv:1710.09412.
Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y.
(2020). Random erasing data augmentation. Pro-
ceedings Of The AAAI Conference On Artificial Intel-
ligence, 34:13001–13008.
Zhu, J., Shi, L., Yan, J., and Zha, H. (2020). Automix:
Mixup networks for sample interpolation via cooper-
ative barycenter learning. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part X, pages 633–
649.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
290