
Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta,
E. (2009). The wacky wide web: A collection of
very large linguistically processed web-crawled cor-
pora. Language Resources and Evaluation, 43:209–
226.
Borchert, F., Lohr, C., Modersohn, L., Langer, T., Foll-
mann, M., Sachs, J. P., Hahn, U., and Schapranow,
M.-P. (2020). GGPONC: A corpus of German med-
ical text with rich metadata based on clinical prac-
tice guidelines. In Proceedings of the 11th Interna-
tional Workshop on Health Text Mining and Informa-
tion Analysis, pages 38–48, Online. Association for
Computational Linguistics.
Destatis, S. B. (2018). Gesundheit. Grunddaten der
Krankenh
¨
auser 2017. Fachserie 12 Reihe 6.1.1. Ar-
tikelnummer 2120611177004.
Greff, K., Srivastava, R., Koutn
´
ık, J., Steunebrink, B.,
and Schmidhuber, J. (2015). LSTM: A search space
odyssey. IEEE transactions on neural networks and
learning systems, 28.
Griffin, J. T. (2013). Next letter prediction for virtual key-
board. https://worldwide.espacenet.com/patent/searc
h-/family/046875664/publication/US9134810B2?q
=pn%3DUS9134810B2.
Hard, A. S., Rao, K., Mathews, R., Beaufays, F., Augen-
stein, S., Eichner, H., Kiddon, C., and Ramage, D.
(2018). Federated learning for mobile keyboard pre-
diction. ArXiv, abs/1811.03604.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9:1735–80.
Jurafsky, D. and Martin, J. H. (2023). N-gram Language
Models, chapter 3. Prentice Hall, 3rd edition. Draft.
Kopetz, J., Jochems, N., Henkel, A., Schley, A., Balzer,
K., Kordts, B., and Schrader, A. (2021). ACTI-
VATE. Sozio-technisches System zur Unterst
¨
utzung
der Kommunikation von Intensivpatienten. BMBF
Forschungsvorhaben, Universit
¨
at zu L
¨
ubeck. Final re-
port.
Kopetz, J. P., Burgsm
¨
uller, S., Vandereike, A.-K., Sengpiel,
M., Wessel, D., and Jochems, N. (2019). Finding user
preferences designing the innovative interaction de-
vice “birdy” for intensive care patients. In Bagnara,
S., Tartaglia, R., Albolino, S., Alexander, T., and Fu-
jita, Y., editors, Proceedings of the 20th Congress of
the International Ergonomics Association (IEA 2018),
pages 698–707, Cham. Springer International Pub-
lishing.
Kordts, B., Kopetz, J. P., Balzer, K., and Jochems, N.
(2018). Requirements for a system supporting patient
communication in intensive care in germany. In Boll,
S., Hein, A., Heuten, W., and Wolf-Ostermann, K., ed-
itors, Zukunft der Pflege : Tagungsband der 1. Clus-
terkonferenz 2018 - Innovative Technologien f
¨
ur die
Pflege, pages 131–136. BIS-Verl. der Carl von Ossiet-
zky Universit
¨
at Oldenburg.
Kristensson, P. O. and M
¨
ullners, T. (2021). Design and
analysis of intelligent text entry systems with function
structure models and envelope analysis. In Proceed-
ings of the 2021 CHI Conference on Human Factors
in Computing Systems, CHI ’21. Association for Com-
puting Machinery.
Ljubic, S., Glavinic, V., and Kukec, M. (2014). Predicting
upper-bound text entry speeds for discrete-tilt-based
input on smartphones. Journal of Interaction Science,
2.
Mangal, S., Joshi, P., and Modak, R. (2019). LSTM
vs. GRU vs. bidirectional RNN for script generation.
CoRR, abs/1908.04332. http://arxiv.org/abs/1908.043
32[Accessed:(25.09.2024)].
Minixhofer, B. (2020). GerPT2: German large and small
versions of GPT2. https://github.com/bminixhofer/g
erpt2 [Accessed: (25.09.2024)].
OpenAI (2023). Gpt-4 technical report. https://arxiv.org/ab
s/2303.08774 [Accessed: (25.09.2024)].
Pouplin, S., Robertson, J., Antoine, J.-Y., Blanchet, A.,
Kahloun, J., Volle, P., Bouteille, J., Lofaso, F., and
Bensmail, D. (2014). Effect of a dynamic keyboard
and word prediction systems on text input speed in
patients with functional tetraplegia. Journal of reha-
bilitation research and development, 51:467–480.
Schadle, I. (2004). Sibyl: Aac system using nlp techniques.
In Miesenberger, K., Klaus, J., Zagler, W. L., and
Burger, D., editors, Computers Helping People with
Special Needs, pages 1009–1015, Berlin, Heidelberg.
Springer.
Shakhovska, K., Dumyn, I., Kryvinska, N., and Kagita,
M. K. (2021). An approach for a next-word prediction
for ukrainian language. Wireless Communications and
Mobile Computing, 2021:1–9.
Suliman, M. and Leith, D. (2023). Two models are better
than one: Federated learning is not private for google
gboard next word prediction. In European Symposium
on Research in Computer Security, pages 105–122.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. CoRR,
abs/1706.03762.
Verwimp, L., Pelemans, J., Van hamme, H., and Wambacq,
P. (2017). Character-word LSTM language models.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 417–427,
Valencia, Spain. Association for Computational Lin-
guistics.
Wandmacher, T., Antoine, J.-Y., Poirier, F., and D
´
eparte,
J.-P. (2008). Sibylle, an assistive communication sys-
tem adapting to the context and its user. ACM Trans.
Access. Comput., 1(1).
Wojcik, B., Morelli, T., and Hoeft, B. (2018). RingBoard
– A Dynamic Virtual Keyboard for Fist Based Text
Entry. Journal on Technology and Persons with Dis-
abilities, page 83.
Wolff, S., Kohrs, C., Scheich, H., and Brechmann,
A. (2011). Auswirkungen von prosodisch-
motivationalen und verz
¨
ogerten R
¨
uckmeldungen
auf die Lernleistung und Hirnaktivitat in einer
Mensch-Computer Interaktion. In INFORMATIK
2011, pages 238–238. GI e.V., Bonn.
HEALTHINF 2025 - 18th International Conference on Health Informatics
52