
Hendrycks, D., Basart, S., Mazeika, M., Zou, A., Kwon, J.,
Mostajabi, M., Steinhardt, J., and Song, D. (2019).
Scaling out-of-distribution detection for real-world
settings. arXiv preprint arXiv:1911.11132.
Hendrycks, D. and Gimpel, K. (2016). A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks. arXiv preprint arXiv:1610.02136.
Hendrycks, D., Mazeika, M., and Dietterich, T. (2018).
Deep anomaly detection with outlier exposure. arXiv
preprint arXiv:1812.04606.
Huang, R., Geng, A., and Li, Y. (2021). On the impor-
tance of gradients for detecting distributional shifts in
the wild. Advances in Neural Information Processing
Systems, 34:677–689.
Krizhevsky, A. and Hinton, G. (2009). Learning multiple
layers of features from tiny images. Technical Re-
port 0, University of Toronto, Toronto, Ontario.
Kusupati, A., Bhatt, G., Rege, A., Wallingford, M., Sinha,
A., Ramanujan, V., Howard-Snyder, W., Chen, K.,
Kakade, S., Jain, P., et al. (2022). Matryoshka rep-
resentation learning. Advances in Neural Information
Processing Systems, 35:30233–30249.
Lee, K., Lee, K., Lee, H., and Shin, J. (2018). A simple uni-
fied framework for detecting out-of-distribution sam-
ples and adversarial attacks. Advances in neural infor-
mation processing systems, 31.
Liang, S., Li, Y., and Srikant, R. (2017). Enhancing the reli-
ability of out-of-distribution image detection in neural
networks. arXiv preprint arXiv:1706.02690.
Liu, W., Wang, X., Owens, J., and Li, Y. (2020). Energy-
based out-of-distribution detection. Advances in neu-
ral information processing systems, 33:21464–21475.
MacQueen, J. et al. (1967). Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297.
Oakland, CA, USA.
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng,
A. Y., et al. (2011). Reading digits in natural images
with unsupervised feature learning. In NIPS workshop
on deep learning and unsupervised feature learning,
volume 2011, page 7. Granada, Spain.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.
Wei, H., Xie, R., Cheng, H., Feng, L., An, B., and Li,
Y. (2022). Mitigating neural network overconfidence
with logit normalization. In International conference
on machine learning, pages 23631–23644. PMLR.
Xu, P., Ehinger, K. A., Zhang, Y., Finkelstein, A., Kulkarni,
S. R., and Xiao, J. (2015). Turkergaze: Crowdsourc-
ing saliency with webcam based eye tracking. arXiv
preprint arXiv:1504.06755.
Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and
Xiao, J. (2015). Lsun: Construction of a large-scale
image dataset using deep learning with humans in the
loop. arXiv preprint arXiv:1506.03365.
Zagoruyko, S. and Komodakis, N. (2016). Wide residual
networks. arXiv preprint arXiv:1605.07146.
Zhang, J., Inkawhich, N., Linderman, R., Chen, Y., and Li,
H. (2023). Mixture outlier exposure: Towards out-of-
distribution detection in fine-grained environments. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 5531–5540.
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Tor-
ralba, A. (2017). Places: A 10 million image database
for scene recognition. IEEE transactions on pattern
analysis and machine intelligence, 40(6):1452–1464.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
26