
and showed the relationship between accuracy and
degrees of polynomials. This research also reveals
the behavior of the approximated function outside the
designated range to approximate, which potentially
impacts on the inference result of privacy-preserving
neural networks. We discuss the reasons for this un-
preferable behavior. This discussion helps prevent un-
expected behaviors of privacy-preserving neural net-
works caused by approximation errors. Overall, our
results provides important knowledge about polyno-
mial approximations of the sigmoid function that are
used for FHE-based privacy-preserving neural net-
works.
REFERENCES
Bos, J. W., Lauter, K., Loftus, J., and Naehrig, M. (2013).
Improved security for a ring-based fully homomor-
phic encryption scheme. In Cryptography and Cod-
ing: 14th IMA International Conference, IMACC
2013, Oxford, UK, December 17-19, 2013. Proceed-
ings 14, pages 45–64. Springer.
Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2012).
(leveled) fully homomorphic encryption without boot-
strapping. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, ITCS ’12,
page 309–325, New York, NY, USA. Association for
Computing Machinery.
Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y.
(2019). A full RNS variant of approximate homomor-
phic encryption. In Selected Areas in Cryptography
– SAC 2018: 25th International Conference, Calgary,
AB, Canada, August 15–17, 2018, Revised Selected
Papers, page 347–368, Berlin, Heidelberg. Springer-
Verlag.
Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Ho-
momorphic encryption for arithmetic of approximate
numbers. In Takagi, T. and Peyrin, T., editors, Ad-
vances in Cryptology – ASIACRYPT 2017, pages 409–
437, Cham. Springer International Publishing.
Cheon, J. H., Kim, D., and Kim, D. (2020). Efficient homo-
morphic comparison methods with optimal complex-
ity. In Moriai, S. and Wang, H., editors, Advances
in Cryptology – ASIACRYPT 2020, pages 221–256,
Cham. Springer International Publishing.
Chillotti, I., Gama, N., Georgieva, M., and Izabach
`
ene, M.
(2020). TFHE: Fast fully homomorphic encryption
over the torus. Journal of Cryptology, 33:34–91.
Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. (2016). CryptoNets:
Applying neural networks to encrypted data with high
throughput and accuracy. In Proceedings of the 33rd
International Conference on International Conference
on Machine Learning - Volume 48, ICML’16, page
201–210. JMLR.org.
Lee, E., Lee, J.-W., No, J.-S., and Kim, Y.-S. (2022).
Minimax approximation of sign function by compos-
ite polynomial for homomorphic comparison. IEEE
Transactions on Dependable and Secure Computing,
19(6):3711–3727.
Lee, J.-W., Lee, E., Lee, Y., Kim, Y.-S., and No, J.-
S. (2021). High-precision bootstrapping of RNS-
CKKS homomorphic encryption using optimal mini-
max polynomial approximation and inverse sine func-
tion. In Canteaut, A. and Standaert, F.-X., editors,
Advances in Cryptology – EUROCRYPT 2021, pages
618–647, Cham. Springer International Publishing.
Lou, Q. and Jiang, L. (2019). SHE: A fast and accurate
deep neural network for encrypted data. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alch
´
e-Buc, F.,
Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.
Meurer, A., Smith, C. P., Paprocki, M.,
ˇ
Cert
´
ık, O., Kir-
pichev, S. B., Rocklin, M., Kumar, A., Ivanov, S.,
Moore, J. K., Singh, S., Rathnayake, T., Vig, S.,
Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H.,
Vats, S., Johansson, F., Pedregosa, F., Curry, M. J.,
Terrel, A. R., Rou
ˇ
cka, v., Saboo, A., Fernando, I., Ku-
lal, S., Cimrman, R., and Scopatz, A. (2017). SymPy:
symbolic computing in Python. PeerJ Computer Sci-
ence, 3:e103.
Meyre, A., Chevallier-Mames, B., Frery, J., Stoian, A., Bre-
dehoft, R., Montero, L., and Kherfallah, C. (2022).
Concrete ML: a privacy-preserving machine learning
library using fully homomorphic encryption for data
scientists. https://github.com/zama-ai/concrete-ml.
Ng, L. K. L. and Chow, S. S. M. (2023). SoK: Crypto-
graphic neural-network computation. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 497–
514.
Regev, O. (2005). On lattices, learning with errors, random
linear codes, and cryptography. In Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of
Computing, STOC ’05, page 84–93, New York, NY,
USA. Association for Computing Machinery.
Remez, E. Y. (1934). Sur la d
´
etermination des polyn
ˆ
omes
d’approximation de degr
´
e donn
´
ee. Comm. Soc. Math.
Kharkov, 10(196):41–63.
Stoian, A., Frery, J., Bredehoft, R., Montero, L., Kherfallah,
C., and Chevallier-Mames, B. (2023). Deep neural
networks for encrypted inference with TFHE. Cryp-
tology ePrint Archive, Paper 2023/257.
Trivedi, D., Boudguiga, A., Kaaniche, N., and Triandopou-
los, N. (2023). Sigml++: Supervised log anomaly
with probabilistic polynomial approximation. Cryp-
tography, 7(4).
ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy
454