
learning-based large-scale outdoor lidar semantic seg-
mentation. In IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), pages 4443–
4446. IEEE.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. (2021). Swin transformer: Hierarchi-
cal vision transformer using shifted windows. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 10012–10022.
Maas, H.-G. and Vosselman, G. (1999). Two algorithms for
extracting building models from raw laser altimetry
data. ISPRS Journal of Photogrammetry and Remote
Sensing, 54(2-3):153–163.
Mei, Q., Qiu, K., Bulatov, D., and Iwaszczuk, D. (2024).
Improving deep learning based point cloud classifi-
cation using Markov Random Fields with Quadratic
Pseudo-Boolean Optimization. ISPRS Annals of Pho-
togrammetry, Remote Sensing & Spatial Information
Sciences, 229-236.
Mitschke, I., Wiemann, T., Igelbrink, F., and Hertzberg, J.
(2022). Hyperspectral 3D point cloud segmentation
using RandLA-Net. In Proc. International Conference
on Intelligent Autonomous Systems (IAS-17). Interna-
tional Conference on Intelligent Autonomous Systems.
IAS.
Mongus, D., Luka
ˇ
c, N., Obrul, D., and
ˇ
Zalik, B. (2013).
Detection of planar points for building extraction from
LiDAR data based on differential morphological and
attribute profiles. ISPRS Annals of the Photogramme-
try, Remote Sensing and Spatial Information Sciences,
2:21–26.
Niemeyer, J., Rottensteiner, F., and Soergel, U. (2014).
Contextual classification of lidar data and building ob-
ject detection in urban areas. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 87:152–165.
Pang, Y., Wang, W., Tay, F. E., Liu, W., Tian, Y., and
Yuan, L. (2022). Masked autoencoders for point cloud
self-supervised learning. In Proceedings of the Euro-
pean Conference on Computer Vision, pages 604–621.
Springer.
Piltz, B., Bayer, S., and Poznanska, A.-M. (2016). Vol-
ume based DTM generation from very high resolution
photogrammetric DSMs. The International Archives
of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 41:83–90.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Point-
net: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 652–660.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space. Advances in neural information pro-
cessing systems, 30.
Qian, G., Li, Y., Peng, H., Mai, J., Hammoud, H., Elho-
seiny, M., and Ghanem, B. (2022). Pointnext: Revis-
iting pointnet++ with improved training and scaling
strategies. Advances in Neural Information Process-
ing Systems, 35:23192–23204.
Qiu, K., Budde, L. E., Bulatov, D., and Iwaszczuk, D.
(2022). Exploring fusion techniques in U-Net and
DeepLab V3 architectures for multi-modal land cover
classification. In Earth Resources and Environmen-
tal Remote Sensing/GIS Applications XIII (SPIE), vol-
ume 12268, pages 190–200. SPIE.
Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point
feature histograms (FPFH) for 3D registration. In
IEEE International Conference on Robotics and Au-
tomation, pages 3212–3217. IEEE.
Tan, W., Qin, N., Ma, L., Li, Y., Du, J., Cai, G., Yang,
K., and Li, J. (2020). Toronto-3D: A large-scale mo-
bile LiDAR dataset for semantic segmentation of ur-
ban roadways. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
Workshops, pages 202–203.
Tchapmi, L., Choy, C., Armeni, I., Gwak, J., and Savarese,
S. (2017). Segcloud: Semantic segmentation of 3d
point clouds. In International Conference on 3D Vi-
sion (3DV), pages 537–547. IEEE.
Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B.,
Goulette, F., and Guibas, L. J. (2019). Kpconv: Flex-
ible and deformable convolution for point clouds. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 6411–6420.
Tombari, F., Salti, S., and Di Stefano, L. (2010). Unique
signatures of histograms for local surface description.
In European Conference on Computer Vision, pages
356–369. Springer.
Weinmann, M., Jutzi, B., Hinz, S., and Mallet, C. (2015).
Semantic point cloud interpretation based on optimal
neighborhoods, relevant features and efficient classi-
fiers. ISPRS Journal of Photogrammetry and Remote
Sensing, 105:286–304.
Weinmann, M., Jutzi, B., and Mallet, C. (2017). Geomet-
ric features and their relevance for 3D point cloud
classification. ISPRS Annals of the Photogramme-
try, Remote Sensing and Spatial Information Sciences,
4:157–164.
Wu, J., Jiao, J., Yang, Q., Zha, Z.-J., and Chen, X. (2019).
Ground-aware point cloud semantic segmentation for
autonomous driving. In Proceedings of the 27th ACM
International Conference on Multimedia, pages 971–
979.
Wu, X., Jiang, L., Wang, P.-S., Liu, Z., Liu, X., Qiao, Y.,
Ouyang, W., He, T., and Zhao, H. (2024). Point trans-
former v3: Simpler faster stronger. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4840–4851.
Yousefhussien, M., Kelbe, D. J., Ientilucci, E. J., and Sal-
vaggio, C. (2018). A multi-scale fully convolutional
network for semantic labeling of 3D point clouds. IS-
PRS Journal of Photogrammetry and Remote Sensing,
143:191–204. ISPRS Journal of Photogrammetry and
Remote Sensing Theme Issue “Point Cloud Process-
ing”.
Zhang, R., Guo, Z., Gao, P., Fang, R., Zhao, B., Wang, D.,
Qiao, Y., and Li, H. (2022). Point-m2ae: multi-scale
masked autoencoders for hierarchical point cloud pre-
training. Advances in Neural Information Processing
Systems, 35:27061–27074.
Zhao, H., Jiang, L., Jia, J., Torr, P. H., and Koltun, V. (2021).
Point transformer. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
16259–16268.
GRAPP 2025 - 20th International Conference on Computer Graphics Theory and Applications
38