
Datta, S., Prescott, H., and Dolan, L. (2015). Intensity of
a pulse of RSL4 transcription factor synthesis deter-
mines Arabidopsis root hair cell size. Nature Plants,
1(10).
Feng, Y., Xu, P., Li, B., Li, P., Wen, X., An, F., Gong,
Y., Xin, Y., Zhu, Z., Wang, Y., and Guo, H. (2017).
Ethylene promotes root hair growth through coordi-
nated EIN3/EIL1 and RHD6/RSL1 activity in Ara-
bidopsis. Proceedings of the National Academy of Sci-
ences, 114(52):13834–13839.
F
¨
ohse, D., Claassen, N., and Jungk, A. (1991). Phospho-
rus efficiency of plants: Ii. significance of root ra-
dius, root hairs and cation-anion balance for phos-
phorus influx in seven plant species. Plant and Soil,
132(2):261–272.
Han, G., Wei, X., Dong, X., Wang, C., Sui, N., Guo, J.,
Yuan, F., Gong, Z., Li, X., Zhang, Y., Meng, Z.,
Chen, Z., Zhao, D., and Wang, B. (2019). Arabidop-
sis ZINC FINGER PROTEIN1 acts downstream of
GL2 to repress root hair initiation and elongation by
directly suppressing bHLH genes. The Plant Cell,
32(1):206–225.
Hardy, S. and Robillard, P. N. (2004). Modeling and
simulation of molecular biology systems using Petri
nets: Modeling goals of various approaches. Jour-
nal of Bioinformatics and Computational Biology,
02(04):619–637.
Heiner, M., Gilbert, D., and Donaldson, R. (2008).
Petri Nets for Systems and Synthetic Biology, page
215–264. Springer Berlin Heidelberg.
Heiner, M., Herajy, M., Liu, F., Rohr, C., and Schwarick,
M. (2012). Snoopy – A Unifying Petri Net Tool, page
398–407. Springer Berlin Heidelberg.
Hopkins, B. G. and Hansen, N. C. (2019). Phosphorus man-
agement in high-yield systems. Journal of Environ-
mental Quality, 48(5):1265–1280.
Hwang, Y., Choi, H.-S., Cho, H.-M., and Cho, H.-T. (2017).
Tracheophytes contain conserved orthologs of a ba-
sic helix-loop-helix transcription factor that modulate
root hair specific genes. The Plant Cell, 29(1):39–53.
Kayoumu, M., Iqbal, A., Muhammad, N., Li, X., Li, L.,
Wang, X., Gui, H., Qi, Q., Ruan, S., Guo, R., Zhang,
X., Song, M., and Dong, Q. (2023). Phosphorus avail-
ability affects the photosynthesis and antioxidant sys-
tem of contrasting low-P-tolerant cotton genotypes.
Antioxidants, 12(2):466.
Liu, B., Wu, J., Yang, S., Schiefelbein, J., and Gan, Y.
(2019). Nitrate regulation of lateral root and root
hair development in plants. Journal of Experimental
Botany, 71(15):4405–4414.
Mangano, S., Denita-Juarez, S. P., Marzol, E., Borassi,
C., and Estevez, J. M. (2018). High auxin and
high phosphate impact on RSL2 expression and ROS-
homeostasis linked to root hair growth in Arabidopsis
thaliana. Frontiers in Plant Science, 9.
Marwan, W., Rohr, C., and Heiner, M. (2011). Petri Nets
in Snoopy: A Unifying Framework for the Graphi-
cal Display, Computational Modelling, and Simula-
tion of Bacterial Regulatory Networks, page 409–437.
Springer New York.
Montiel, G., Gantet, P., Jay-Allemand, C., and Breton, C.
(2004). Transcription factor networks. Pathways to
the knowledge of root development. Plant Physiology,
136(3):3478–3485.
Murata, T. (1989). Petri nets: Properties, analysis and ap-
plications. Proceedings of the IEEE, 77(4):541–580.
Postma, J. A., Kuppe, C., Owen, M. R., Mellor, N., Grif-
fiths, M., Bennett, M. J., Lynch, J. P., and Watt, M.
(2017). OpenSimRoot: widening the scope and appli-
cation of root architectural models. New Phytologist,
215(3):1274–1286.
Ren, M., Li, Y., Zhu, J., Zhao, K., Wu, Z., and Mao, C.
(2023). Phenotypes and molecular mechanisms un-
derlying the root response to phosphate deprivation in
plants. International Journal of Molecular Sciences,
24(6):5107.
Roldan, M., Dinh, P., Leung, S., and McManus, M. T.
(2013). Ethylene and the responses of plants to phos-
phate deficiency. AoB Plants, 5(0):plt013–plt013.
Salazar-Henao, J. E., V
´
elez-Berm
´
udez, I. C., and Schmidt,
W. (2016). The regulation and plasticity of root
hair patterning and morphogenesis. Development,
143(11):1848–1858.
Savage, N., Yang, T. J. W., Chen, C. Y., Lin, K.-L.,
Monk, N. A. M., and Schmidt, W. (2013). Posi-
tional signaling and expression of ENHANCER OF
TRY AND CPC1 are tuned to increase root hair den-
sity in response to phosphate deficiency in Arabidop-
sis thaliana. PLoS ONE, 8(10):e75452.
Shibata, M., Breuer, C., Kawamura, A., Clark, N. M., Ry-
men, B., Braidwood, L., Morohashi, K., Busch, W.,
Benfey, P. N., Sozzani, R., and Sugimoto, K. (2018).
GTL1 and DF1 regulate root hair growth through tran-
scriptional repression of ROOT HAIR DEFECTIVE
6-LIKE 4 in Arabidopsis. Development, 145(3).
Song, L., Yu, H., Dong, J., Che, X., Jiao, Y., and Liu,
D. (2016). The molecular mechanism of ethylene-
mediated root hair development induced by phosphate
starvation. PLOS Genetics, 12(7):e1006194.
Vissenberg, K., Claeijs, N., Balcerowicz, D., and Schoe-
naers, S. (2020). Hormonal regulation of root
hair growth and responses to the environment in
Arabidopsis. Journal of Experimental Botany,
71(8):2412–2427.
Xiao, F., Gong, Q., Zhao, S., Lin, H., and Zhou, H. (2021).
MYB30 and ETHYLENE INSENSITIVE3 antagonis-
tically modulate root hair growth in Arabidopsis. The
Plant Journal, 106(2):480–492.
Yi, K., Menand, B., Bell, E., and Dolan, L. (2010). A ba-
sic helix-loop-helix transcription factor controls cell
growth and size in root hairs. Nature Genetics,
42(3):264–267.
Zhu, S., Est
´
evez, J. M., Liao, H., Zhu, Y., Yang, T., Li,
C., Wang, Y., Li, L., Liu, X., Pacheco, J. M., Guo,
H., and Yu, F. (2020). The RALF1–FERONIA com-
plex phosphorylates eIF4E1 to promote protein syn-
thesis and polar root hair growth. Molecular Plant,
13(5):698–716.
BIOINFORMATICS 2025 - 16th International Conference on Bioinformatics Models, Methods and Algorithms
536